**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Hagen–Poiseuille equation

Summary

In nonideal fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical pipe of constant cross section.
It can be successfully applied to air flow in lung alveoli, or the flow through a drinking straw or through a hypodermic needle. It was experimentally derived independently by Jean Léonard Marie Poiseuille in 1838 and Gotthilf Heinrich Ludwig Hagen, and published by Poiseuille in 1840–41 and 1846. The theoretical justification of the Poiseuille law was given by George Stokes in 1845.
The assumptions of the equation are that the fluid is incompressible and Newtonian; the flow is laminar through a pipe of constant circular cross-section that is substantially longer than its diameter; and there is no acceleration of fluid in the pipe. For velocities and pipe diameters above a threshold, actual fluid flow is not laminar but turbulent, leading to larger pressure drops than calculated by the Hagen–Poiseuille equation.
Poiseuille's equation describes the pressure drop due to the viscosity of the fluid; other types of pressure drops may still occur in a fluid (see a demonstration here). For example, the pressure needed to drive a viscous fluid up against gravity would contain both that as needed in Poiseuille's law plus that as needed in Bernoulli's equation, such that any point in the flow would have a pressure greater than zero (otherwise no flow would happen).
Another example is when blood flows into a narrower constriction, its speed will be greater than in a larger diameter (due to continuity of volumetric flow rate), and its pressure will be lower than in a larger diameter (due to Bernoulli's equation). However, the viscosity of blood will cause additional pressure drop along the direction of flow, which is proportional to length traveled (as per Poiseuille's law). Both effects contribute to the actual pressure drop.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (6)

Related people (34)

Related publications (203)

Related courses (22)

Related units (8)

Related lectures (57)

Viscosity

The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity is defined scientifically as a force multiplied by a time divided by an area. Thus its SI units are newton-seconds per square metre, or pascal-seconds. Viscosity quantifies the internal frictional force between adjacent layers of fluid that are in relative motion.

Hemodynamics

Hemodynamics or haemodynamics are the dynamics of blood flow. The circulatory system is controlled by homeostatic mechanisms of autoregulation, just as hydraulic circuits are controlled by control systems. The hemodynamic response continuously monitors and adjusts to conditions in the body and its environment. Hemodynamics explains the physical laws that govern the flow of blood in the blood vessels.

Darcy's law

Darcy's law is an equation that describes the flow of a fluid through a porous medium. The law was formulated by Henry Darcy based on results of experiments on the flow of water through beds of sand, forming the basis of hydrogeology, a branch of earth sciences. It is analogous to Ohm's law in electrostatics, linearly relating the volume flow rate of the fluid to the hydraulic head difference (which is often just proportional to the pressure difference) via the hydraulic conductivity.

, , , , , , , , ,

ChE-330: Fluid mechanics and transport phenomena

The concept of Shell balances, the Navier-Stokes equations and generalized differential balances equations for heat and mass transport are given. These relations are applied to model systems. Integral

CIVIL-427: Flow monitoring technology in water engineering

This course aims to provide theoretical fundamentals in flow measurement science, and advanced knowledge regarding measurement methods, tools and instrumentation applied to experimental hydraulics, in

ME-444: Hydrodynamics

Nondimensionalized Navier-Stokes equations result in a great variety of models (Stokes, Lubrication, Euler, Potential) depending on the Reynolds number. The concept of boundary layer enables us then t

Covers centrifugal instabilities, Rayleigh criterion, experimental setups, Navier-Stokes equations, base flow analysis, and comparison between theory and experiments.

Covers the Navier-Stokes equations in fluid dynamics and elasticity equations.

Covers the steady state solutions for Poiseuille flow and different flow scenarios.

François Gallaire, Edouard Boujo, Yves-Marie François Ducimetière

We consider fluid flows, governed by the Navier-Stokes equations, subject to a steady symmetry-breaking bifurcation and forced by a weak noise acting on a slow timescale. By generalizing the multiple-scale weakly nonlinear expansion technique employed in t ...

2024The goal of this work is to use anisotropic adaptive finite elements for the numerical simulation of aluminium electrolysis. The anisotropic adaptive criteria are based on a posteriori error estimates derived for simplified problems. First, we consider an ...

Maria Colombo, Massimo Sorella

The Obukhov-Corrsin theory of scalar turbulence [21, 54] advances quantitative predictions on passive-scalar advection in a turbulent regime and can be regarded as the analogue for passive scalars of Kolmogorov's K41 theory of fully developed turbulence [4 ...