Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre l'entraînement des réseaux neuronaux en utilisant la descente de gradient stochastique, les règles de la chaîne, le calcul des gradients, la décroissance du poids et le décrochage.
Explore la relation complexe entre les neurosciences et l'apprentissage automatique, en soulignant les défis de l'analyse des données neuronales et le rôle des outils d'apprentissage automatique.
Explore l'importance de l'hippocampe dans la mémoire et la navigation spatiale, en discutant de sa structure unique et de ses implications pour la recherche plus large sur le cerveau.
Explore le modèle de perceptron multicouche, la formation, l'optimisation, le prétraitement des données, les fonctions d'activation, la rétropropagation et la régularisation.
Couvre les réseaux neuronaux convolutifs, les architectures standard, les techniques de formation et les exemples contradictoires en apprentissage profond.
Introduit les bases de l'apprentissage automatique, couvrant l'apprentissage supervisé et non supervisé, la régression linéaire et la compréhension des données.
Explore les réseaux neuronaux formés sous la descente de gradient stochastique, discutant des couches cachées, de la fonction de perte carrée et de l'évolution des particules.
Explore les réseaux neuronaux apprenant par récompense, les structures acteur-critique, la plasticité synaptique et le rôle de la dopamine dans les changements synaptiques.