Concept

Poincaré space

In algebraic topology, a Poincaré space is an n-dimensional topological space with a distinguished element μ of its nth homology group such that taking the cap product with an element of the kth cohomology group yields an isomorphism to the (n − k)th homology group. The space is essentially one for which Poincaré duality is valid; more precisely, one whose singular chain complex forms a Poincaré complex with respect to the distinguished element μ. For example, any closed, orientable, connected manifold M is a Poincaré space, where the distinguished element is the fundamental class Poincaré spaces are used in surgery theory to analyze and classify manifolds. Not every Poincaré space is a manifold, but the difference can be studied, first by having a normal map from a manifold, and then via obstruction theory. Sometimes, Poincaré space means a homology sphere with non-trivial fundamental group—for instance, the Poincaré dodecahedral space in 3 dimensions.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.