Concept

Sinus polaire

In geometry, the polar sine generalizes the sine function of angle to the vertex angle of a polytope. It is denoted by psin. Let v1, ..., vn (n ≥ 1) be non-zero Euclidean vectors in n-dimensional space (Rn) that are directed from a vertex of a parallelotope, forming the edges of the parallelotope. The polar sine of the vertex angle is: where the numerator is the determinant which equals the signed hypervolume of the parallelotope with vector edges and where the denominator is the n-fold product of the magnitudes of the vectors, which equals the hypervolume of the n-dimensional hyperrectangle with edges equal to the magnitudes of the vectors ||v1||, ||v2||, ... ||vn|| rather than the vectors themselves. Also see Ericksson. The parallelotope is like a "squashed hyperrectangle", so it has less hypervolume than the hyperrectangle, meaning (see image for the 3d case): as for the ordinary sine, with either bound being reached only in the case that all vectors are mutually orthogonal. In the case n = 2, the polar sine is the ordinary sine of the angle between the two vectors. A non-negative version of the polar sine that works in any m-dimensional space can be defined using the Gram determinant. The numerator is given as where the superscript T indicates matrix transposition. This can be nonzero only if m ≥ n. In the case m = n, this is equivalent to the absolute value of the definition given previously. In the degenerate case m < n, the determinant will be of a singular n × n matrix, giving Ω = 0, because it is not possible to have n linearly independent vectors in m-dimensional space. The polar sine changes sign whenever two vectors are interchanged, due to the antisymmetry of row-exchanging in the determinant; however, its absolute value will remain unchanged. The polar sine does not change if all of the vectors v1, ..., vn are scalar-multiplied by positive constants ci, due to factorization If an odd number of these constants are instead negative, then the sign of the polar sine will change; however, its absolute value will remain unchanged.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.