Alfredo PasquarelloAlfredo Pasquarello effectue ses études en physique à l'Ecole normale supérieure de Pise et à l'Université de Pise et obtient leurs diplômes respectifs en 1986. Il obtient le titre de Docteur ès sciences à l'EPFL en 1991 avec une thèse portant sur les transitions à plusieurs photons dans les solides. Ensuite, il effectue des recherches post-doctorales aux Laboratoires Bell (Murray Hill, New Jersey) sur les propriétés magnétiques des fullerènes de carbone. En 1993, il rejoint l'Institut romand de recherche numérique en physique des matériaux (IRRMA), où sa recherche porte sur des méthodes de simulation ab initio. En 1998, le Prix Latsis de l'EPFL lui est decerné pour son travail de recherche portant sur les matériaux à base de silice désordonnée. Bénéficiant de plusieurs subsides du Fonds National, il constitue ensuite sa propre équipe de recherche à l'IRRMA. En juillet 2003, il est nommé Professeur en Physique théorique de la matière condensée à l'EPFL. Actuellement, il dirige la Chaire de simulation à l'échelle atomique.
Jean-Philippe ThiranJean-Philippe Thiran was born in Namur, Belgium, in August 1970. He received the Electrical Engineering degree and the PhD degree from the Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium, in 1993 and 1997, respectively. From 1993 to 1997, he was the co-ordinator of the medical image analysis group of the Communications and Remote Sensing Laboratory at UCL, mainly working on medical image analysis. Dr Jean-Philippe Thiran joined the Signal Processing Institute (ITS) of the Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland, in February 1998 as a senior lecturer. He was promoted to Assistant Professor in 2004, to Associate Professor in 2011 and is now a Full Professor since 2020. He also holds a 20% position at the Department of Radiology of the University of Lausanne (UNIL) and of the Lausanne University Hospital (CHUV) as Associate Professor ad personam. Dr Thiran's current scientific interests include
Computational medical imaging: acquisition, reconstruction and analysis of imaging data, with emphasis on regularized linear inverse problems (compressed sensing, convex optimization). Applications to medical imaging: diffusion MRI, ultrasound imaging, inverse planning in radiotherapy, etc.Computer vision & machine learning: image and video analysis, with application to facial expression recognition, eye tracking, lip reading, industrial inspection, medical image analysis, etc.
Giuseppe CarleoGiuseppe Carleo is a computational quantum physicist, whose main focus is the development of advanced numerical algorithms tostudy challenging problems involving strongly interacting quantum systems.He is best known for the introduction of machine learning techniques to study both equilibrium and dynamical properties,based on a neural-network representations of quantum states, as well for the time-dependent variational Monte Carlo method.He earned a Ph.D. in Condensed Matter Theory from the International School for Advanced Studies (SISSA) in Italy in 2011.He held postdoctoral positions at the Institut d’Optique in France and ETH Zurich in Switzerland, where he alsoserved as a lecturer in computational quantum physics.In 2018, he joined the Flatiron Institute in New York City in 2018 at the Center for Computational Quantum Physics (CCQ), working as a Research Scientist and project leader, and also leading the development of the open-source project NetKet.Since September 2020 he is an assistant professor at EPFL, in Switzerland, leading the Computational Quantum Science Laboratory (CQSL).