CS-308: Introduction to quantum computationThe course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
MICRO-435: Quantum and nanocomputingThe course teaches non von-Neumann architectures. The first part of the course deals with quantum computing, sensing, and communications. The second focuses on field-coupled and conduction-based nanoc
PHYS-550: Quantum information theoryAfter recapping the basics of quantum theory from an information
theoretic perspective, we will cover more advanced topics in
quantum information theory. This includes introducing measures of quantum
ME-469: Nano-scale heat transferIn this course we study heat transfer (and energy conversion) from a microscopic perspective. First we focus on understanding why classical laws (i.e. Fourier Law) are what they are and what are their
MSE-486: Organic electronic materialsThis course will introduce students to the field of organic electronic materials. The goal of this course is to discuss the origin of electronic properties in organic materials, charge transport mecha
PHYS-758: Advanced Course on Quantum CommunicationThe aim of this doctoral course by Nicolas Sangouard is to lay the theoretical groundwork that is needed for students to understand how to take advantage of quantum effects for communication technolog