A qutrit (or quantum trit) is a unit of quantum information that is realized by a 3-level quantum system, that may be in a superposition of three mutually orthogonal quantum states. The qutrit is analogous to the classical radix-3 trit, just as the qubit, a quantum system described by a superposition of two orthogonal states, is analogous to the classical radix-2 bit. There is ongoing work to develop quantum computers using qutrits and qubits with multiple states. A qutrit has three orthonormal basis states or vectors, often denoted , , and in Dirac or bra–ket notation. These are used to describe the qutrit as a superposition state vector in the form of a linear combination of the three orthonormal basis states: where the coefficients are complex probability amplitudes, such that the sum of their squares is unity (normalization): The qubit's orthonormal basis states span the two-dimensional complex Hilbert space , corresponding to spin-up and spin-down of a spin-1/2 particle. Qutrits require a Hilbert space of higher dimension, namely the three-dimensional spanned by the qutrit's basis , which can be realized by a three-level quantum system. An n-qutrit register can represent 3n different states simultaneously, i.e., a superposition state vector in 3n-dimensional complex Hilbert space. Qutrits have several peculiar features when used for storing quantum information. For example, they are more robust to decoherence under certain environmental interactions. In reality, manipulating qutrits directly might be tricky, and one way to do that is by using an entanglement with a qubit. The quantum logic gates operating on single qutrits are unitary matrices and gates that act on registers of qutrits are unitary matrices (the elements of the unitary groups U(3) and U(3n) respectively). The rotation operator gates for SU(3) are , where is the ath Gell-Mann matrix, and is a real value (with period ). The Lie algebra of the matrix exponential is provided here.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.