Trimmed estimatorIn statistics, a trimmed estimator is an estimator derived from another estimator by excluding some of the extreme values, a process called truncation. This is generally done to obtain a more robust statistic, and the extreme values are considered outliers. Trimmed estimators also often have higher efficiency for mixture distributions and heavy-tailed distributions than the corresponding untrimmed estimator, at the cost of lower efficiency for other distributions, such as the normal distribution.
Milieu de gamme (statistique)En statistique, le milieu de gamme ou le milieu extrême d'un ensemble de valeurs de données statistiques est la moyenne arithmétique des valeurs maximales et minimales dans un ensemble de données, défini comme: Le milieu de gamme est le point médian de la gamme ; en tant que tel, c'est une mesure de la tendance centrale. Le milieu de gamme est rarement utilisé dans l'analyse statistique pratique, car il manque d'efficacité en tant qu'estimateur pour la plupart des distributions d'intérêt, car il ignore tous les points intermédiaires et manque de robustesse, car les valeurs aberrantes le modifient considérablement.
TrimeanIn statistics the trimean (TM), or Tukey's trimean, is a measure of a probability distribution's location defined as a weighted average of the distribution's median and its two quartiles: This is equivalent to the average of the median and the midhinge: The foundations of the trimean were part of Arthur Bowley's teachings, and later popularized by statistician John Tukey in his 1977 book which has given its name to a set of techniques called exploratory data analysis.
MidhingeIn statistics, the midhinge is the average of the first and third quartiles and is thus a measure of location. Equivalently, it is the 25% trimmed mid-range or 25% midsummary; it is an L-estimator. The midhinge is related to the interquartile range (IQR), the difference of the third and first quartiles (i.e. ), which is a measure of statistical dispersion. The two are complementary in sense that if one knows the midhinge and the IQR, one can find the first and third quartiles.
Boîte à moustachesDans les représentations graphiques de données statistiques, la boîte à moustaches, aussi appelée diagramme en boîte, boîtes à pattes, boîte de Tukey (en anglais, box-and-whisker plot, plus simplement box plot) est un moyen rapide de figurer le profil essentiel d'une série statistique quantitative. Elle a été inventée en 1977 par John Tukey, mais peut faire l'objet de certains aménagements selon les utilisateurs. La boîte à moustaches résume seulement quelques indicateurs de position du caractère étudié (médiane, quartiles, minimum, maximum ou déciles).
Interdecile rangeIn statistics, the interdecile range is the difference between the first and the ninth deciles (10% and 90%). The interdecile range is a measure of statistical dispersion of the values in a set of data, similar to the range and the interquartile range, and can be computed from the (non-parametric) seven-number summary. Despite its simplicity, the interdecile range of a sample drawn from a normal distribution can be divided by 2.56 to give a reasonably efficient estimator of the standard deviation of a normal distribution.
Robust measures of scaleIn statistics, robust measures of scale are methods that quantify the statistical dispersion in a sample of numerical data while resisting outliers. The most common such robust statistics are the interquartile range (IQR) and the median absolute deviation (MAD). These are contrasted with conventional or non-robust measures of scale, such as sample standard deviation, which are greatly influenced by outliers.
Five-number summaryThe five-number summary is a set of descriptive statistics that provides information about a dataset. It consists of the five most important sample percentiles: the sample minimum (smallest observation) the lower quartile or first quartile the median (the middle value) the upper quartile or third quartile the sample maximum (largest observation) In addition to the median of a single set of data there are two related statistics called the upper and lower quartiles.
Seven-number summaryIn descriptive statistics, the seven-number summary is a collection of seven summary statistics, and is an extension of the five-number summary. There are three similar, common forms. As with the five-number summary, it can be represented by a modified box plot, adding hatch-marks on the "whiskers" for two of the additional numbers. The following percentiles are (approximately) evenly spaced under a normally distributed variable: the 2nd percentile (better: 2.15%) the 9th percentile (better: 8.
Interquartile meanThe interquartile mean (IQM) (or midmean) is a statistical measure of central tendency based on the truncated mean of the interquartile range. The IQM is very similar to the scoring method used in sports that are evaluated by a panel of judges: discard the lowest and the highest scores; calculate the mean value of the remaining scores. In calculation of the IQM, only the data between the first and third quartiles is used, and the lowest 25% and the highest 25% of the data are discarded. assuming the values have been ordered.