Résumé
En physique, l'amortissement d'un système est une atténuation de ses mouvements par dissipation de l'énergie qui les engendre. Il peut être lié de diverses manières à la vitesse. Le frottement entre deux solides correspond à une dissipation sous la forme de chaleur. Il est régi par la loi de Coulomb selon laquelle la force de frottement ne dépend pas de la vitesse. Lorsque l'interface est lubrifiée l'énergie mécanique est encore transformée en chaleur mais la force de frottement devient proportionnelle à la vitesse selon la loi de la viscosité. On parle alors d'amortissement visqueux bien que cet effet linéaire apparaisse également dans des phénomènes plus ou moins éloignés. C'est l'aspect de la question essentiellement étudié dans cet article. Un solide qui oscille dans un fluide est soumis à un tel amortissement lorsque sa vitesse est suffisamment faible pour que l'écoulement soit laminaire. À plus grande vitesse il apparaît un sillage tourbillonnaire ou turbulent qui dissipe l'énergie de manière purement mécanique. Cela conduit à une force de traînée approximativement proportionnelle au carré de la vitesse. Dans tout système réel, une partie de l'énergie totale est dissipée, le plus souvent en chaleur, ce qui crée une force d'amortissement. En mécanique, celle-ci dépend de la vitesse du corps. Dans de nombreux cas, on peut supposer que le système est linéaire, l'amortissement étant alors proportionnel à la vitesse (voir Système oscillant à un degré de liberté). En électricité, l'amortissement désigne l'effet résistif d'un circuit RLC. On définit le coefficient d'amortissement c par : Étudions un système idéal Masse-Ressort-Amortisseur, avec une masse m fixée (dans le sens où le corps garde la même masse tout au long de l'étude), une constante de raideur k, et un coefficient d'amortissement c : La masse est un corps libre. On suppose le repère inertiel, donc le premier vecteur est parallèle au ressort et à l'amortisseur. D'après la conservation de la quantité de mouvement : C'est une équation différentielle ordinaire du second ordre.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.