In chemistry, the standard molar entropy is the entropy content of one mole of pure substance at a standard state of pressure and any temperature of interest. These are often (but not necessarily) chosen to be the standard temperature and pressure. The standard molar entropy at pressure = is usually given the symbol S°, and has units of joules per mole per kelvin (J⋅mol−1⋅K−1). Unlike standard enthalpies of formation, the value of S° is absolute. That is, an element in its standard state has a definite, nonzero value of S at room temperature. The entropy of a pure crystalline structure can be 0 J⋅mol−1⋅K−1 only at 0 K, according to the third law of thermodynamics. However, this assumes that the material forms a 'perfect crystal' without any residual entropy. This can be due to crystallographic defects, dislocations, and/or incomplete rotational quenching within the solid, as originally pointed out by Linus Pauling. These contributions to the entropy are always present, because crystals always grow at a finite rate and at temperature. However, the residual entropy is often quite negligible and can be accounted for when it occurs using statistical mechanics. If a mole of a solid substance is a perfectly ordered solid at 0 K, then if the solid is warmed by its surroundings to 298.15 K without melting, its absolute molar entropy would be the sum of a series of N stepwise and reversible entropy changes. The limit of this sum as becomes an integral: In this example, and is the molar heat capacity at a constant pressure of the substance in the reversible process k. The molar heat capacity is not constant during the experiment because it changes depending on the (increasing) temperature of the substance. Therefore, a table of values for is required to find the total molar entropy. The quantity represents the ratio of a very small exchange of heat energy to the temperature T. The total molar entropy is the sum of many small changes in molar entropy, where each small change can be considered a reversible process.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Séances de cours associées (19)
Thermodynamique : Entropie, Spontanéité et Énergie Libre
Explore la capacité thermique, l'entropie, la spontanéité et l'énergie libre dans les réactions chimiques, en mettant l'accent sur la relation entre l'entropie et le désordre.
Thermodynamique : énergie libre entropie et Gibbs
Explore la thermodynamique, l'entropie et l'énergie libre de Gibbs pour prédire la spontanéité de la réaction et comprendre l'entropie absolue.
Processus spontanés : énergie libre entropie et Gibbs
Explore les processus spontanés, l'entropie et l'énergie libre de Gibbs pour prédire la spontanéité de la réaction chimique basée sur les changements d'entropie.
Afficher plus
Publications associées (6)
Concepts associés (1)
Enthalpie libre
L’enthalpie libre, appelée aussi énergie libre de Gibbs ou simplement énergie de Gibbs, est une fonction d'état extensive introduite par Willard Gibbs, et généralement notée G. Le changement d'enthalpie libre correspond au travail maximal qui peut être extrait d'un système fermé à température et pression fixes, hors le travail dû à la variation de volume. L'enthalpie libre est reliée à l'enthalpie par la formule (où désigne la température et l'entropie), à l'énergie libre par la relation (où désigne la pression et le volume) et à l'énergie interne par la relation .

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.