Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les règles de voisinage les plus proches, les défis de l'algorithme k-NN, le classificateur Bayes et l'algorithme k-means pour le regroupement.
Introduit la classification des documents en utilisant des fonctionnalités telles que les mots et les métadonnées, et des modèles tels que k-Nearest-Neighbors et word embeddings.
Introduit la méthode k-Nearest Neighbors et l'expansion des fonctionnalités pour l'apprentissage non linéaire de la machine par des transformations polynômes.
Couvre l'algorithme de recherche le plus proche du voisin et le lemme de Johnson-Lindenstrauss pour la réduction de la dimensionnalité, en explorant les techniques de prétraitement et le hachage sensible à la localité.
Introduit k-Nearest Neighbors pour la classification et l'expansion des fonctionnalités pour gérer les données non linéaires via des entrées transformées.