Explore les règles de voisinage les plus proches, les défis de l'algorithme k-NN, le classificateur Bayes et l'algorithme k-means pour le regroupement.
Introduit la méthode k-Nearest Neighbors et l'expansion des fonctionnalités pour l'apprentissage non linéaire de la machine par des transformations polynômes.
Couvre l'algorithme de recherche le plus proche du voisin et le lemme de Johnson-Lindenstrauss pour la réduction de la dimensionnalité, en explorant les techniques de prétraitement et le hachage sensible à la localité.
Explique le classificateur K-Nearest Neighbors, en attribuant des étiquettes basées sur les points les plus proches et en lissant le bruit dans les étiquettes.
Introduit k-Nearest Neighbors pour la classification et l'expansion des fonctionnalités pour gérer les données non linéaires via des entrées transformées.
Couvre les modèles linéaires, la régression logistique, les limites de décision, k-NN, et les applications pratiques dans l'attribution des auteurs et l'analyse des données d'image.
Couvre le classificateur k-NN, la reconnaissance numérique manuscrite, la réduction de données, les applications, la construction de graphes, les limitations et la malédiction de la dimensionnalité.