In numerical analysis, predictor–corrector methods belong to a class of algorithms designed to integrate ordinary differential equations - to find an unknown function that satisfies a given differential equation. All such algorithms proceed in two steps: The initial, "prediction" step, starts from a function fitted to the function-values and derivative-values at a preceding set of points to extrapolate ("anticipate") this function's value at a subsequent, new point. The next, "corrector" step refines the initial approximation by using the predicted value of the function and another method to interpolate that unknown function's value at the same subsequent point. When considering the numerical solution of ordinary differential equations (ODEs), a predictor–corrector method typically uses an explicit method for the predictor step and an implicit method for the corrector step. A simple predictor–corrector method (known as Heun's method) can be constructed from the Euler method (an explicit method) and the trapezoidal rule (an implicit method). Consider the differential equation and denote the step size by . First, the predictor step: starting from the current value , calculate an initial guess value via the Euler method, Next, the corrector step: improve the initial guess using trapezoidal rule, That value is used as the next step. There are different variants of a predictor–corrector method, depending on how often the corrector method is applied. The Predict–Evaluate–Correct–Evaluate (PECE) mode refers to the variant in the above example: It is also possible to evaluate the function f only once per step by using the method in Predict–Evaluate–Correct (PEC) mode: Additionally, the corrector step can be repeated in the hope that this achieves an even better approximation to the true solution. If the corrector method is run twice, this yields the PECECE mode: The PECEC mode has one fewer function evaluation than PECECE mode. More generally, if the corrector is run k times, the method is in P(EC)k or P(EC)kE mode.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.