EE-512: Applied biomedical signal processingThe goal of this course is twofold: (1) to introduce physiological basis, signal acquisition solutions (sensors) and state-of-the-art signal processing techniques, and (2) to propose concrete examples
MICRO-310(b): Signals and systems I (for SV)Présentation des concepts et des outils de base pour l'analyse et la caractérisation des signaux, la conception de systèmes de traitement et la modélisation linéaire de systèmes pour les étudiants en
DH-406: Machine learning for DHThis course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
MATH-341: Linear modelsRegression modelling is a fundamental tool of statistics, because it describes how the law of a random variable of interest may depend on other variables. This course aims to familiarize students with
FIN-403: EconometricsThe course covers basic econometric models and methods that are routinely applied to obtain inference results in economic and financial applications.
FIN-407: Machine learning in financeThis course aims to give an introduction to the application of machine learning to finance, focusing on the problems of portfolio optimization and hedging, as well as textual analysis. A particular fo
CS-433: Machine learningMachine learning methods are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and pr
MATH-413: Statistics for data scienceStatistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops