Publications associées (323)

Task-driven neural network models predict neural dynamics of proprioception: Experimental data, activations and predictions of neural network models

Alexander Mathis, Alberto Silvio Chiappa, Alessandro Marin Vargas, Axel Bisi

Here we provide the neural data, activation and predictions for the best models and result dataframes of our article "Task-driven neural network models predict neural dynamics of proprioception". It contains the behavioral and neural experimental data (cu ...
EPFL Infoscience2024

Pore size estimation in axon-mimicking microfibers with diffusion-relaxation MRI

Jean-Philippe Thiran, Erick Jorge Canales Rodriguez, Marco Pizzolato, Muhamed Barakovic, Tim Bjørn Dyrby

Purpose: This study aims to evaluate two distinct approaches for fiber radius estimation using diffusion-relaxation MRI data acquired in biomimetic microfiber phantoms that mimic hollow axons. The methods considered are the spherical mean power-law approac ...
Hoboken2024

Discrete choice modeling in the era of big data

Nicola Marco Ortelli

The technological advancements of the past decades have allowed transforming an increasing part of our daily actions and decisions into storable data, leading to a radical change in the scale and scope of available data in relation to virtually any object ...
EPFL2024

The hunt for the Karman 'constant' revisited

Peter Monkewitz

The log law of the wall, joining the inner, near-wall mean velocity profile (MVP) in wall-bounded turbulent flows to the outer region, has been a permanent fixture of turbulence research for over hundred years, but there is still no general agreement on th ...
CAMBRIDGE UNIV PRESS2023

Uniaxial fiber reinforced DEA fabrication

Julian Asboth

Dielectric Elastomer Actuators (DEA) are devices designed to convert electric energy into mechanical work. However, the current actuator design will expand when actuated while muscles contract. Fiber reinforcement may allow for anisotropic movement, which ...
2023

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.