Concepts associés (38)
Transaction logic
Transaction Logic is an extension of predicate logic that accounts in a clean and declarative way for the phenomenon of state changes in logic programs and databases. This extension adds connectives specifically designed for combining simple actions into complex transactions and for providing control over their execution. The logic has a natural model theory and a sound and complete proof theory. Transaction Logic has a Horn clause subset, which has a procedural as well as a declarative semantics.
Higher-order programming
Higher-order programming is a style of computer programming that uses software components, like functions, modules or objects, as values. It is usually instantiated with, or borrowed from, models of computation such as lambda calculus which make heavy use of higher-order functions. A programming language can be considered higher-order if components, such as procedures or labels, can be used just like data. For example, these elements could be used in the same way as arguments or values.
Event calculus
The event calculus is a logical language for representing and reasoning about events and their effects first presented by Robert Kowalski and Marek Sergot in 1986. It was extended by Murray Shanahan and Rob Miller in the 1990s. Similar to other languages for reasoning about change, the event calculus represents the effects of actions on fluents. However, events can also be external to the system. In the event calculus, one can specify the value of fluents at some given time points, the events that take place at given time points, and their effects.
Fifth Generation Computer Systems
The Fifth Generation Computer Systems (FGCS) was a 10-year initiative begun in 1982 by Japan's Ministry of International Trade and Industry (MITI) to create computers using massively parallel computing and logic programming. It aimed to create an "epoch-making computer" with supercomputer-like performance and to provide a platform for future developments in artificial intelligence. FGCS was ahead of its time, and its excessive ambitions led to commercial failure.
Constraint satisfaction
In artificial intelligence and operations research, constraint satisfaction is the process of finding a solution through a set of constraints that impose conditions that the variables must satisfy. A solution is therefore a set of values for the variables that satisfies all constraints—that is, a point in the feasible region. The techniques used in constraint satisfaction depend on the kind of constraints being considered.
Datalog
Datalog est un langage de requête et de règles pour les bases de données déductives. Il correspond à un sous ensemble de Prolog. Ses origines remontent aux débuts de la programmation logique. Datalog a la syntaxe suivante.
Chaînage avant
Le chaînage avant est une méthode de déduction qui applique des règles en partant des prémisses pour en déduire de nouvelles conclusions. Ces conclusions enrichissent la mémoire de travail et peuvent devenir les prémisses d'autres règles. Par opposition, le chaînage arrière part des conclusions pour essayer de « remonter » aux axiomes. Le chaînage avant est utilisé en intelligence artificielle, dans un système expert à base de règles, dans un moteur de règles, ou encore dans un système de production.
Autoepistemic logic
The autoepistemic logic is a formal logic for the representation and reasoning of knowledge about knowledge. While propositional logic can only express facts, autoepistemic logic can express knowledge and lack of knowledge about facts. The stable model semantics, which is used to give a semantics to logic programming with negation as failure, can be seen as a simplified form of autoepistemic logic. The syntax of autoepistemic logic extends that of propositional logic by a modal operator indicating knowledge: if is a formula, indicates that is known.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.