**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Concept# Constraint satisfaction

Résumé

In artificial intelligence and operations research, constraint satisfaction is the process of finding a solution through
a set of constraints that impose conditions that the variables must satisfy. A solution is therefore a set of values for the variables that satisfies all constraints—that is, a point in the feasible region.
The techniques used in constraint satisfaction depend on the kind of constraints being considered. Often used are constraints on a finite domain, to the point that constraint satisfaction problems are typically identified with problems based on constraints on a finite domain. Such problems are usually solved via search, in particular a form of backtracking or local search. Constraint propagation are other methods used on such problems; most of them are incomplete in general, that is, they may solve the problem or prove it unsatisfiable, but not always. Constraint propagation methods are also used in conjunction with search to make a given problem simpler

Source officielle

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement

Personnes associées (5)

Concepts associés (13)

Intelligence artificielle

vignette|redresse=0.8|Les assistants personnels intelligents sont l'une des applications concrètes de l'intelligence artificielle dans les années 2010.
L'intelligence artificielle (IA) est un ensembl

Problème de satisfaction de contraintes

Les problèmes de satisfaction de contraintes ou CSP (Constraint Satisfaction Problem) sont des problèmes mathématiques où l'on cherche des états ou des objets satisfaisant un certain nombre de contra

Propagation de contraintes

La propagation de contraintes dans le domaine de la programmation par contraintes est le fait de réduire le domaine d'une variable afin de maintenir l'ensemble des valeurs possibles cohérent avec les

Publications associées (81)

Unités associées (4)

Chargement

Chargement

Chargement

Cours associés (16)

CS-430: Intelligent agents

Software agents are widely used to control physical, economic and financial processes. The course presents practical methods for implementing software agents and multi-agent systems, supported by programming exercises, and the theoretical underpinnings including computational game theory.

CS-330: Artificial intelligence

Introduction aux techniques de l'Intelligence Artificielle, complémentée par des exercices de programmation qui montrent les algorithmes et des exemples de leur application à des problèmes pratiques.

MICRO-470: Scaling laws & simulations in micro & nanosystems

This class combines an analytical and finite elements modeling (FEM) simulations approach to scaling laws in MEMS/NEMS. The dominant physical effects and scaling effects when downsizing sensors and actuators in microsystems are discussed, across a broad range of actuation principles.

We consider high-dimensional random optimization problems where the dynamical variables are subjected to nonconvex excluded volume constraints. We focus on the case in which the cost function is a simple quadratic cost and the excluded volume constraints are modeled by a perceptron constraint satisfaction problem. We show that depending on the density of constraints, one can have different situations. If the number of constraints is small, one typically has a phase where the ground state of the cost function is unique and sits on the boundary of the island of configurations allowed by the constraints. In this case, there is a hypostatic number of marginally satisfied constraints. If the number of constraints is increased one enters a glassy phase where the cost function has many local minima sitting again on the boundary of the regions of allowed configurations. At the phase transition point, the total number of marginally satisfied constraints becomes equal to the number of degrees of freedom in the problem and therefore we say that these minima are isostatic. We conjecture that by increasing further the constraints the system stays isostatic up to the point where the volume of available phase space shrinks to zero. We derive our results using the replica method and we also analyze a dynamical algorithm, the Karush-Kuhn-Tucker algorithm, through dynamical mean-field theory and we show how to recover the results of the replica approach in the replica symmetric phase.

Constraint Satisfaction Problems (CSPs) are ubiquitous in computer science. Many problems, ranging from resource allocation and scheduling to fault diagnosis and design, involve constraint satisfaction as an essential component. A CSP is given by a set of variables and constraints on small subsets of these variables. It is solved by finding assignments of values to the variables such that all constraints are satisfied. In its most general form, a CSP is combinatorial and complex. In this thesis, we consider constraint satisfaction problems with variables in continuous, numerical domains. Contrary to most existing techniques, which focus on computing a single optimal solution, we address the problem of computing a compact representation of the space of all solutions that satisfy the constraints. This has the advantage that no optimization criterion has to be formulated beforehand, and that the space of possibilities can be explored systematically. In certain applications, such as diagnosis and design, these advantages are crucial. In consistency techniques, the solution space is represented by labels assigned to individual variables or combinations of variables. When the labeling is globally consistent, each label contains only those values or combinations of values which appear in at least one solution. This kind of labeling is a compact, sound and complete representation of the solution space, and can be combined with other reasoning methods. In practice, computing a globally consistent labeling is too complex. This is usually tackled in two ways. One way is to enforce consistencies locally, using propagation algorithms. This prunes the search space and hence reduces the subsequent search effort. The other way is to identify simplifying properties which guarantee that global consistency can be enforced tractably using local propagation algorithms. When constraints are represented by mathematical expressions, implementing local consistency algorithms is difficult because it requires tools for solving arbitrary systems of equations. In this thesis, we propose to approximate feasible solution regions by 2k-trees, thus providing a means of combining constraints logically rather than numerically. This representation, commonly used in computer vision and image processing, avoids using complex mathematical tools. We propose simple and stable algorithms for computing labels of arbitrary degrees of consistency using this representation. For binary constraints, it is known that simplifying convexity properties reduces the complexity of solving a CSP. These properties guarantee that local degrees of consistency are sufficient to ensure global consistency. We show how, in continuous domains, these results can be generalized to ternary and in fact arbitrary n-ary constraints. This leads to polynomial-time algorithms for computing globally consistent labels for a large class of constraint satisfaction problems with continuous variables. We describe and justify our representation of constraints and our consistency algorithms. We also give a complete analysis of the theoretical results we present. Finally, the developed techniques are illustrated using practical examples.

Séances de cours associées (18)