Surface roughness is a key factor when it comes to friction and wear, as well as to other physical properties. These phenomena are controlled by mechanisms acting at small scales, in which the topography of apparently flat surfaces is revealed. Roughness i ...
This thesis presents the development, construction, and benchmark of an experimental platform that combines cold fermionic 6Li atoms with locally controllable light-matter interactions. To enable local control, a new device, the cavity-microscope, was crea ...
Sensing and imaging of light in the shortwave infrared (SWIR) range is increasingly used in various fields, including bio-imaging, remote sensing, and semiconductor process control. SWIR-sensitive organic photodetectors (OPDs) are promising because organic ...
Plasmonic photochemistry has a large potential to replace energy-intensive chemical processes with low-temperature, low-pressure light-driven chemical reactions. Plasmonic nanostructures have emerged as promising photocatalysts with exceptional and tunable ...
The interaction of light and matter enables nonlinear frequency conversion and the creation of coherent currents. The optical control of electric currents is of fundamental relevance and prominent research focus in the last decades. These photocurrents ena ...
Coherent light sources emitting in the terahertz range are highly sought after for fundamental research and applications. Terahertz lasers rely on achieving population inversion. We demonstrate the generation of terahertz radiation using nitrogen-vacancy c ...
Polyiodides present high bonding flexibility already at ambient conditions, and undergo significant pressure-induced structural deformations. Resonant Raman spectroscopy has been widely used to study I-I bonds in various polyiodides, but it carries a risk ...
Isolated attosecond pulses from an X-ray free-electron laser are in high demand for attosecond science, which enables the probing of electron dynamics by X-ray nonlinear spectroscopy and single-particle imaging.The aim of this thesis is to simulate attos ...
The goal of 3D printing is to realize complex 3D structures by locally adding material in small volume elements called voxels - in contrast to successively subtracting material by etching, milling or machining. This field started with optics-based proposal ...
This thesis reports on the realization of the first experiments conducted with superfluid, strongly interacting Fermi gases of 6Li coupled to the light field of an optical cavity. In the scope of existing ultracold atomic platforms, this is the first time ...