Concept

T-structure

In the branch of mathematics called homological algebra, a t-structure is a way to axiomatize the properties of an of a . A t-structure on consists of two subcategories of a or stable which abstract the idea of complexes whose cohomology vanishes in positive, respectively negative, degrees. There can be many distinct t-structures on the same category, and the interplay between these structures has implications for algebra and geometry. The notion of a t-structure arose in the work of Beilinson, Bernstein, Deligne, and Gabber on perverse sheaves. Fix a triangulated category with translation functor . A t-structure on is a pair of full subcategories, each of which is stable under isomorphism, which satisfy the following three axioms. If X is an object of and Y is an object of , then If X is an object of , then X[1] is also an object of . Similarly, if Y is an object of , then Y[-1] is also an object of . If A is an object of , then there exists a distinguished triangle such that X is an object of and Y is an object of . It can be shown that the subcategories and are closed under extensions in . In particular, they are stable under finite direct sums. Suppose that is a t-structure on . In this case, for any integer n, we define to be the full subcategory of whose objects have the form , where is an object of . Similarly, is the full subcategory of objects , where is an object of . More briefly, we define With this notation, the axioms above may be rewritten as: If X is an object of and Y is an object of , then and . If A is an object of , then there exists a distinguished triangle such that X is an object of and Y is an object of . The heart or core of the t-structure is the full subcategory consisting of objects contained in both and , that is, The heart of a t-structure is an (whereas a triangulated category is additive but almost never abelian), and it is stable under extensions. A triangulated category with a choice of t-structure is sometimes called a t-category. It is clear that, to define a t-structure, it suffices to fix integers m and n and specify and .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.