Concept

Mackey space

Résumé
In mathematics, particularly in functional analysis, a Mackey space is a locally convex topological vector space X such that the topology of X coincides with the Mackey topology τ(X,X′), the finest topology which still preserves the continuous dual. They are named after George Mackey. Examples of locally convex spaces that are Mackey spaces include: All barrelled spaces and more generally all infrabarreled spaces Hence in particular all bornological spaces and reflexive spaces All metrizable spaces. In particular, all Fréchet spaces, including all Banach spaces and specifically Hilbert spaces, are Mackey spaces. The product, locally convex direct sum, and the inductive limit of a family of Mackey spaces is a Mackey space. A locally convex space with continuous dual is a Mackey space if and only if each convex and -relatively compact subset of is equicontinuous. The completion of a Mackey space is again a Mackey space. A separated quotient of a Mackey space is again a Mackey space. A Mackey space need not be separable, complete, quasi-barrelled, nor -quasi-barrelled.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.