In mathematics, particularly in functional analysis, a Mackey space is a locally convex topological vector space X such that the topology of X coincides with the Mackey topology τ(X,X′), the finest topology which still preserves the continuous dual. They are named after George Mackey.
Examples of locally convex spaces that are Mackey spaces include:
All barrelled spaces and more generally all infrabarreled spaces
Hence in particular all bornological spaces and reflexive spaces
All metrizable spaces.
In particular, all Fréchet spaces, including all Banach spaces and specifically Hilbert spaces, are Mackey spaces.
The product, locally convex direct sum, and the inductive limit of a family of Mackey spaces is a Mackey space.
A locally convex space with continuous dual is a Mackey space if and only if each convex and -relatively compact subset of is equicontinuous.
The completion of a Mackey space is again a Mackey space.
A separated quotient of a Mackey space is again a Mackey space.
A Mackey space need not be separable, complete, quasi-barrelled, nor -quasi-barrelled.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by or , which are generalizations of , while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces.
In functional analysis and related areas of mathematics, a metrizable (resp. pseudometrizable) topological vector space (TVS) is a TVS whose topology is induced by a metric (resp. pseudometric). An LM-space is an inductive limit of a sequence of locally convex metrizable TVS.
vignette|Une fonction gaussienne bidimensionnelle est un exemple de fonction à décroissance rapide. En analyse mathématique, l'espace de Schwartz est l'espace des fonctions déclinantes (c'est-à-dire des fonctions indéfiniment dérivables à décroissance rapide, ainsi que leurs dérivées de tous ordres). Le dual de cet espace est l'espace des distributions tempérées. Les espaces et jouent un rôle essentiel dans la théorie de la transformée de Fourier.