Interaction (statistiques)Une interaction, en statistiques, peut survenir lorsqu'on considère la relation entre deux variables ou plus. Le terme "interaction" est donc utilisé pour décrire une situation dans laquelle l'influence d'une variable dépend de l'état de la seconde (ce qui est ce cas, lorsque les deux variables ne sont pas additives). Le plus souvent, les interactions apparaissent dans le contexte des analyses de régression. La présence d'interactions peut avoir des implications importantes pour l'interprétation des modèles statistiques.
Fractional factorial designIn statistics, fractional factorial designs are experimental designs consisting of a carefully chosen subset (fraction) of the experimental runs of a full factorial design. The subset is chosen so as to exploit the sparsity-of-effects principle to expose information about the most important features of the problem studied, while using a fraction of the effort of a full factorial design in terms of experimental runs and resources.
Orthogonal arrayIn mathematics, an orthogonal array (more specifically, a fixed-level orthogonal array) is a "table" (array) whose entries come from a fixed finite set of symbols (for example, {1,2,...,v}), arranged in such a way that there is an integer t so that for every selection of t columns of the table, all ordered t-tuples of the symbols, formed by taking the entries in each row restricted to these columns, appear the same number of times. The number t is called the strength of the orthogonal array.
Méthode des surfaces de réponsesthumb|Expériences statistiques : à gauche, un plan factoriel et, à droite, la surface de réponses obtenue par MSR. En statistiques, la méthode des surfaces de réponses (MSR) a pour but d'explorer les relations entre les variables dépendantes et indépendantes impliquées dans une expérience. Elle est due aux travaux de 1951 de George Box et K. B. Wilson. L'idée principale de leur méthode est l'utilisation d'une séquence d'expériences. Box et Wilson suggèrent d'utiliser un modèle à polynôme de second degré, mais concèdent que ce modèle n'est qu'une approximation.