Graphe de DesarguesEn théorie des graphes, le graphe de Desargues est un graphe cubique symétrique possédant 20 sommets et 30 arêtes. Il doit son nom à Girard Desargues. Le graphe de Desargues est isomorphe au graphe biparti de Kneser et au graphe généralisé de Petersen GP(10,3). C'est aussi le graphe d'incidence de la configuration de Desargues. Le graphe de Desargues est hamiltonien et peut être décrit par la notation LCF : [5, −5, 9, −9]5.
Mineur (théorie des graphes)La notion de mineur d'un graphe est un concept de théorie des graphes. Il a été défini et étudié par Robertson et Seymour dans une série d'articles intitulée Graph minors (I à XXIII), publiée dans le Journal of Combinatorial Theory entre 1983 et 2011. Soit un graphe non orienté fini. Un graphe est un mineur de s'il peut être obtenu en contractant des arêtes d'un sous-graphe de .
Énigme des trois maisonsL'énigme des trois maisons, aussi appelée l'énigme de l'eau, du gaz et de l'électricité, est un jeu mathématique dont l'analyse utilise un théorème de topologie ou de théorie des graphes. Ce problème n'a pas de solution. Georges Perec le cite en 1978 dans son livre Je me souviens : . Cette énigme est déjà posée par Henry Dudeney en 1917 dans son livre Amusements in mathematics. Il précise qu'. Celle de l'article en est une, qu'il appelle eau, gaz, et électricité.
Graphe biparti completEn théorie des graphes, un graphe est dit biparti complet (ou encore est appelé une biclique) s'il est biparti et chaque sommet du premier ensemble est relié à tous les sommets du second ensemble. Plus précisément, il existe une partition de son ensemble de sommets en deux sous-ensembles et telle que chaque sommet de est relié à chaque sommet de . Si le premier ensemble est de cardinal m et le second ensemble est de cardinal n, le graphe biparti complet est noté . Si m = 1, le graphe complet biparti K1,n est une étoile et est noté .
Tracé de graphesEn théorie des graphes, le tracé de graphes consiste à représenter des graphes dans le plan. Le tracé de graphes est utile à des applications telles que la conception de circuits VLSI, l'analyse de réseaux sociaux, la cartographie, et la bio-informatique. Les graphes sont généralement représentés en utilisant des points, disques ou boites pour représenter les sommets, et des courbes ou des segments pour représenter les arêtes. Pour les graphes orientés, on utilise habituellement ses flèches en bout d'arête pour représenter l'orientation.
Graphe de PetersenLe graphe de Petersen est, en théorie des graphes, un graphe particulier possédant et . Il s'agit d'un petit graphe qui sert d'exemple et de contre-exemple pour plusieurs problèmes de la théorie des graphes. Il porte le nom du mathématicien Julius Petersen, qui l'introduisit en 1898 en tant que plus petit graphe cubique sans isthme dont les arêtes ne peuvent être colorées avec trois couleurs. Il a cependant été mentionné par Alfred Kempe pour la première fois auparavant, en 1886.
Graphe toroïdalright|frame| Un graphe plongé sur le tore de telle façon que les arêtes ne se coupent pas. En mathématiques, et plus précisément en théorie des graphes, un graphe G est toroïdal s'il peut être plongé sur le tore, c'est-à-dire que les sommets du graphe peuvent être placés sur le tore de telle façon que les arêtes ne se coupent pas. En général dire qu'un graphe est toroïdal sous-entend également qu'il n'est pas planaire.
Linkless embeddingIn topological graph theory, a mathematical discipline, a linkless embedding of an undirected graph is an embedding of the graph into three-dimensional Euclidean space in such a way that no two cycles of the graph are linked. A flat embedding is an embedding with the property that every cycle is the boundary of a topological disk whose interior is disjoint from the graph. A linklessly embeddable graph is a graph that has a linkless or flat embedding; these graphs form a three-dimensional analogue of the planar graphs.
Théorie topologique des graphesEn mathématiques, la théorie topologique des graphes est une branche de la théorie des graphes . Elle étudie entre autres les plongements de graphes dans des surfaces, les graphiques en tant qu'espaces topologiques ainsi que les immersions de graphes. Un plongement d'un graphe dans une surface donnée, une sphère par exemple, est une façon de dessiner ce graphe sur cette surface sans que deux arêtes se croisent. Un problème fondamental de la théorie topologique des graphes, souvent présenté comme un casse - tête mathématique, est le problème des trois chalets.