thumb|Une coloration du graphe de Petersen avec 3 couleurs. En théorie des graphes, la coloration de graphe consiste à attribuer une couleur à chacun de ses sommets de manière que deux sommets reliés par une arête soient de couleur différente. On cherche souvent à utiliser le nombre minimal de couleurs, appelé nombre chromatique. La coloration fractionnaire consiste à chercher non plus une mais plusieurs couleurs par sommet et en associant des coûts à chacune. Le champ d'applications de la coloration de graphe couvre notamment le problème de l'attribution de fréquences dans les télécommunications, la conception de puces électroniques ou l'allocation de registres en compilation. Théorème des quatre couleurs Les premiers résultats de coloration de graphe concernent presque exclusivement les graphes planaires : il s'agissait alors de colorier des cartes. En cherchant à mettre en couleurs une carte des comtés d'Angleterre, Francis Guthrie postula la conjecture des quatre couleurs. Il remarqua en effet qu'il n'y avait besoin que de quatre couleurs pour que deux comtés ayant une frontière commune soient de couleurs différentes. Le frère de Guthrie transmit la question à son professeur de mathématiques, Auguste de Morgan de l'University College de Londres. De Morgan mentionna ce problème dans une lettre adressée à William Rowan Hamilton en 1852. Arthur Cayley évoqua cette question lors d'un colloque de la London Mathematical Society en 1879. La même année, Alfred Kempe publia ce qu'il prétendit en être une démonstration et pendant une décennie, on crut que le problème des quatre couleurs était résolu. Kempe fut élu membre de la Royal Society et devint ensuite président de la London Mathematical Society. En 1890, Percy John Heawood fit remarquer que la démonstration de Kempe était fausse. Il montra quant à lui le théorème des cinq couleurs en reprenant des idées de Kempe. De nombreux travaux ont été publiés lors du siècle suivant pour réduire le nombre de couleurs à quatre, jusqu'à la démonstration finale de Kenneth Appel et Wolfgang Haken.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (30)
MATH-360: Graph theory
The course aims to introduce the basic concepts and results of modern Graph Theory with special emphasis on those topics and techniques that have proved to be applicable in theoretical computer scienc
PHYS-512: Statistical physics of computation
The students understand tools from the statistical physics of disordered systems, and apply them to study computational and statistical problems in graph theory, discrete optimisation, inference and m
EE-548: Audio engineering
This lecture is oriented towards the study of audio engineering, room acoustics, sound propagation, and sound radiation from sources and acoustic antennas. The learning outcomes will be the techniques
Afficher plus
Concepts associés (77)
Théorème des quatre couleurs
Le théorème des quatre couleurs indique qu'il est possible, en n'utilisant que quatre couleurs différentes, de colorier n'importe quelle carte découpée en régions connexes, de sorte que deux régions adjacentes (ou limitrophes), c'est-à-dire ayant toute une frontière (et non simplement un point) en commun reçoivent toujours deux couleurs distinctes. L'énoncé peut varier et concerner, de manière tout à fait équivalente, la coloration des faces d'un polyèdre ou celle des sommets d'un graphe planaire, en remplaçant la carte par un graphe dont les sommets sont les régions et les arêtes sont les frontières entre régions.
Maille (théorie des graphes)
En théorie des graphes, la maille d'un graphe est la longueur du plus court de ses cycles. Un graphe acyclique est généralement considéré comme ayant une maille infinie (ou, pour certains auteurs, une maille de −1). La maille d'un graphe est la longueur du plus court de ses cycles. Image:Petersen graph blue.svg|Le [[graphe de Petersen]] a une maille de 5 et est une cage. Image:Heawood_Graph.svg|Le [[graphe de Heawood]] a une maille de 6 et est une cage. Image:Frucht_graph.neato.
Lexique de la théorie des graphes
NOTOC Acyclique graphe ne contenant pas de cycle. Adjacence une liste d'adjacence est une structure de données constituée d'un tableau dont le -ème élément correspond à la liste des voisins du -ème sommet. Adjacence une matrice d'adjacence est une matrice carrée usuellement notée , de dimensions , dont chaque élément est égal au nombre d'arêtes incidentes (ayant pour extrémités) aux sommets d'indices et (pour un graphe simple non pondéré, ). Dans le cas d'un graphe pondéré, chaque élément est égal à la somme du poids des arêtes incidentes.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.