In geometry, the alternated hypercube honeycomb (or demicubic honeycomb) is a dimensional infinite series of honeycombs, based on the hypercube honeycomb with an alternation operation. It is given a Schläfli symbol h{4,3...3,4} representing the regular form with half the vertices removed and containing the symmetry of Coxeter group for n ≥ 4. A lower symmetry form can be created by removing another mirror on an order-4 peak.
The alternated hypercube facets become demihypercubes, and the deleted vertices create new orthoplex facets. The vertex figure for honeycombs of this family are rectified orthoplexes.
These are also named as hδn for an (n-1)-dimensional honeycomb.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In geometry, a hypercubic honeycomb is a family of regular honeycombs (tessellations) in n-dimensional spaces with the Schläfli symbols {4,3...3,4} and containing the symmetry of Coxeter group R_n (or B^~_n–1) for n ≥ 3. The tessellation is constructed from 4 n-hypercubes per ridge. The vertex figure is a cross-polytope {3...3,4}. The hypercubic honeycombs are self-dual. Coxeter named this family as δ_n+1 for an n-dimensional honeycomb. A Wythoff construction is a method for constructing a uniform polyhedron or plane tiling.
Un groupe de Coxeter est un groupe engendré par des réflexions sur un espace. Les groupes de Coxeter se retrouvent dans de nombreux domaines des mathématiques et de la géométrie. En particulier, les groupes diédraux, ou les groupes d'isométries de polyèdres réguliers, sont des groupes de Coxeter. Les groupes de Weyl sont d'autres exemples de groupes de Coxeter. Ces groupes sont nommés d'après le mathématicien H.S.M. Coxeter. Un groupe de Coxeter est un groupe W ayant une présentation du type: où est à valeurs dans , est symétrique () et vérifie , si .