Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Students learn more when they are actively engaged in the learning process. While hands-on activities, labs and projects are moments when students are active, the learning benefits can be amplified with coaching strategies. This activity will enable studen ...
Conversational tutoring systems (CTSs) offer a promising avenue for individualized learning support, especially in domains like persuasive writing. Although these systems have the potential to enhance the learning process, the specific role of learner cont ...
2024
, ,
This work studies the learning process over social networks under partial and random information sharing. In traditional social learning models, agents exchange full belief information with each other while trying to infer the true state of nature. We stud ...
Social behaviors such as cooperation are crucial for mammals. A deeper knowledge of the neuronal mechanisms underlying cooperation can be beneficial for people suffering from pathologies with impaired social behavior. Our aim was to study the brain activit ...
In light of the challenges posed by climate change and the goals of the Paris Agreement, electricity generation is shifting to a more renewable and decentralized pattern, while the operation of systems like buildings is increasingly electrified. This calls ...
Reinforcement learning (RL) is crucial for learning to adapt to new environments. In RL, the prediction error is an important component that compares the expected and actual rewards. Dopamine plays a critical role in encoding these prediction errors. In my ...
Human babies have a natural desire to interact with new toys and objects, through which they learn how the world around them works, e.g., that glass shatters when dropped, but a rubber ball does not. When their predictions are proven incorrect, such as whe ...
Informative sample selection in an active learning (AL) setting helps a machine learning system attain optimum performance with minimum labeled samples, thus reducing annotation costs and boosting performance of computer-aided diagnosis systems in the pres ...
Bebras tasks are considered to develop Computational Thinking (CT) and are currently used for this purpose in many studies. However, the relationship between Bebras tasks and CT is recent and, given the scarcity of validated instruments for assessing CT th ...
As computational thinking (CT) becomes increasingly acknowledged as an important skill in education, self-directed learning (SDL) emerges as a key strategy for developing this capability. The advent of generative AI (GenAI) conversational agents has disrup ...