Démonstration automatique de théorèmesLa démonstration automatique de théorèmes (DAT) est l'activité d'un logiciel qui démontre une proposition qu'on lui soumet, sans l'aide de l'utilisateur. Les démonstrateurs automatiques de théorème ont résolu des conjectures intéressantes difficiles à établir, certaines ayant échappé aux mathématiciens pendant longtemps ; c'est le cas, par exemple, de la , démontrée en 1996 par le logiciel EQP.
Démonstration formelleUne démonstration formelle est une séquence finie de propositions (appelées formules bien formées dans le cas d'un langage formel) dont chacun est un axiome, une hypothèse, ou résulte des propositions précédentes dans la séquence par une règle d'inférence. La dernière proposition de la séquence est un théorème d'un système formel. La notion de théorème n'est en général pas effective, donc n'existe pas de méthode par laquelle nous pouvons à chaque fois trouver une démonstration d'une proposition donnée ou de déterminer s'il y en a une.
If and only ifIn logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.
Logiques sous-structurellesLes logiques sous-structurelles sont des logiques mathématiques où certaines règles d'inférence ne sont pas utilisées ou ont une utilisation restreinte. En particulier, par rapport à la logique classique ou à la logique intuitionniste, il leur manque la règle de contraction qui dit peu ou prou que si on peut faire un raisonnement avec une même hypothèse invoquée deux fois, on peut faire le même raisonnement sans dupliquer cette hypothèse et la règle d'affaiblissement qui permet d'éliminer de l'ensemble des hypothèses une hypothèse inutilisée dans le raisonnement.
Gentzen's consistency proofGentzen's consistency proof is a result of proof theory in mathematical logic, published by Gerhard Gentzen in 1936. It shows that the Peano axioms of first-order arithmetic do not contain a contradiction (i.e. are "consistent"), as long as a certain other system used in the proof does not contain any contradictions either. This other system, today called "primitive recursive arithmetic with the additional principle of quantifier-free transfinite induction up to the ordinal ε0", is neither weaker nor stronger than the system of Peano axioms.
Taquet (symbole)En logique mathématique et en informatique le symbole taquet, « ⊢ », désigné ainsi en raison de sa ressemblance au système de blocage des voiles sur un bateau, représente la déduction logique. La formule « x ⊢ y » signifie « y est déductible de x », c'est-à-dire que y est prouvable à partir de x. On peut aussi employer le taquet comme un opérateur unaire : peut être lu comme : Je sais que A est vrai.
Analytic proofIn mathematics, an analytic proof is a proof of a theorem in analysis that only makes use of methods from analysis, and which does not predominantly make use of algebraic or geometrical methods. The term was first used by Bernard Bolzano, who first provided a non-analytic proof of his intermediate value theorem and then, several years later provided a proof of the theorem that was free from intuitions concerning lines crossing each other at a point, and so he felt happy calling it analytic (Bolzano 1817).
Mathématiques à reboursLes mathématiques à rebours sont une branche des mathématiques qui pourrait être définie simplement par l'idée de « remonter aux axiomes à partir des théorèmes », contrairement au sens habituel (des axiomes vers les théorèmes). Un peu plus précisément, il s'agit d'évaluer la robustesse logique d'un ensemble de résultats mathématiques usuels en déterminant exactement quels axiomes sont nécessaires et suffisants pour les prouver. Le domaine a été créé par Harvey Friedman dans son article « Some systems of second order arithmetic and their use ».
Jean-Yves GirardJean-Yves Girard, né en 1947 à Lyon, est un logicien et mathématicien contemporain, directeur de recherche au CNRS (émérite) au département de logique de la programmation de l'institut de mathématiques de Luminy (devenu l'Institut de Mathématiques de Marseille depuis le ). Il a reçu la médaille d'argent du CNRS en 1983. Depuis 1994, il est correspondant de l'Académie des sciences, et membre de l'Académie européenne depuis 1995. Jean-Yves Girard est un ancien élève de l'École normale d'instituteurs de Lyon (1962) et de l'École normale supérieure de Saint-Cloud (sciences) (1966).
Structural proof theoryIn mathematical logic, structural proof theory is the subdiscipline of proof theory that studies proof calculi that support a notion of analytic proof, a kind of proof whose semantic properties are exposed. When all the theorems of a logic formalised in a structural proof theory have analytic proofs, then the proof theory can be used to demonstrate such things as consistency, provide decision procedures, and allow mathematical or computational witnesses to be extracted as counterparts to theorems, the kind of task that is more often given to model theory.