L'hormone thyréotrope (TRH, de l'thyrotropin-releasing hormone), également appelée thyréolibérine ou protiréline sous sa forme synthétique, est une hormone peptidique produite par l'hypothalamus qui stimule la synthèse et la libération de la thyréostimuline (TSH) et de la prolactine par l'hypophyse antérieure. Il s'agit d'un tripeptide de ayant pour séquence . L'hypophyse a une action sur la thyroïde par l'intermédiaire de la TSH. Elle-même est sous le contrôle d'un facteur hypothalamique : la TRH. TSH et TRH sont responsables de l'augmentation de la captation d'iode, de la synthèse des hormones thyroïdiennes et de leur mise en circulation dans le sang. C'est à Roger Guillemin et Andrew V. Schally que l'on doit la découverte en 1969 de la séquence peptidique de la TRH humaine ainsi que la première synthèse de l'hormone. On peut également détecter la présence de TRH dans d'autres parties du cerveau, ainsi que dans l'appareil digestif et les îlots du pancréas. Des préparations médicales de TRH sont utilisées dans les tests diagnostiques des troubles de la thyroïde ainsi qu'en cas d'acromégalie. La forme synthétique de l'hormone thyréotrope est la protiréline, un tripeptide (L-pyroglutamyl-L-histidyl-L-prolinamide) dont la séquence est identique à celle de l'hormone naturelle. Elle est commercialisée sous le nom de Stimu-TSH en France, TRH-Ferring en Allemagne par le laboratoire Ferring Pharmaceuticals et au Japon, sous forme de tartrate, sous le nom de Hirtonin par les laboratoires Takeda. Elle est utilisée pour effectuer des tests à la TRH dans le cadre de l'exploration fonctionnelle pour le diagnostic des affections thyroïdiennes et dans l'étude de la sécrétion de la prolactine. Un anticorps dirigé contre le récepteur de la TSH ou une mutation activatrice du récepteur provoquent une hypersécrétion d'hormone thyroïdienne (thyroxine T4 et triiodothyronine T3), responsable d'une hyperthyroïdie qui peut être la cause de la maladie de Basedow. La valeur normale de la concentration plasmatique en TSH est comprise entre 0,3 et .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
BIO-450: Molecular endocrinology: health and environment
We will define homeostasis, principles of hormone action and the molecular mechanisms underlying them to illustrate the complexities of physiological regulation. Human interactions with the environmen
BIO-377: Physiology by systems
Le but est de connaitre et comprendre le fonctionnement des systèmes cardiovasculaire, urinaire, respiratoire, digestif, ainsi que du métabolisme de base et sa régulation afin de déveloper une réflect
BIO-321: Morphology II
Ce cours permet aux étudiants ayant suivi Morphologie I de réviser et d'approfondir leurs connaissances par l'étude de l'anatomie radiologique et du développement. L'origine de malformations fréquente

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.