Concept

Stability of the Solar System

The stability of the Solar System is a subject of much inquiry in astronomy. Though the planets have been stable when historically observed, and will be in the short term, their weak gravitational effects on one another can add up in unpredictable ways. For this reason (among others), the Solar System is chaotic in the technical sense of mathematical chaos theory, and even the most precise long-term models for the orbital motion of the Solar System are not valid over more than a few tens of millions of years. The Solar System is stable in human terms, and far beyond, given that it is unlikely any of the planets will collide with each other or be ejected from the system in the next few billion years, and that Earth's orbit will be relatively stable. Since Newton's law of gravitation (1687), mathematicians and astronomers (such as Pierre-Simon Laplace, Joseph Louis Lagrange, Carl Friedrich Gauss, Henri Poincaré, Andrey Kolmogorov, Vladimir Arnold, and Jürgen Moser) have searched for evidence for the stability of the planetary motions, and this quest led to many mathematical developments and several successive "proofs" of stability of the Solar System. n-body problem The orbits of the planets are open to long-term variations. Modeling the Solar System is a case of the n-body problem of physics, which is generally unsolvable except by numerical simulation. An orbital resonance happens when any two periods have a simple numerical ratio. The most fundamental period for an object in the Solar System is its orbital period, and orbital resonances pervade the Solar System. In 1867, the American astronomer Daniel Kirkwood noticed that asteroids in the asteroid belt are not randomly distributed. There were distinct gaps in the belt at locations that corresponded to resonances with Jupiter. For example, there were no asteroids at the 3:1 resonance — a distance of — or at the 2:1 resonance at . These are now known as the Kirkwood gaps.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.