Concept

Symmetric inverse semigroup

NOTOC In abstract algebra, the set of all partial bijections on a set X ( one-to-one partial transformations) forms an inverse semigroup, called the symmetric inverse semigroup (actually a monoid) on X. The conventional notation for the symmetric inverse semigroup on a set X is or . In general is not commutative. Details about the origin of the symmetric inverse semigroup are available in the discussion on the origins of the inverse semigroup. When X is a finite set {1, ..., n}, the inverse semigroup of one-to-one partial transformations is denoted by Cn and its elements are called charts or partial symmetries. The notion of chart generalizes the notion of permutation. A (famous) example of (sets of) charts are the hypomorphic mapping sets from the reconstruction conjecture in graph theory. The cycle notation of classical, group-based permutations generalizes to symmetric inverse semigroups by the addition of a notion called a path, which (unlike a cycle) ends when it reaches the ; the notation thus extended is called path notation.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.