Concept

Polyiamond

A polyiamond (also polyamond or simply iamond, or sometimes triangular polyomino) is a polyform whose base form is an equilateral triangle. The word polyiamond is a back-formation from diamond, because this word is often used to describe the shape of a pair of equilateral triangles placed base to base, and the initial 'di-' looks like a Greek prefix meaning 'two-' (though diamond actually derives from Greek ἀδάμας - also the basis for the word "adamant"). The name was suggested by recreational mathematics writer Thomas H. O'Beirne in New Scientist 1961 number 1, page 164. The basic combinatorial question is, How many different polyiamonds exist with a given number of cells? Like polyominoes, polyiamonds may be either free or one-sided. Free polyiamonds are invariant under reflection as well as translation and rotation. One-sided polyiamonds distinguish reflections. The number of free n-iamonds for n = 1, 2, 3, ... is: 1, 1, 1, 3, 4, 12, 24, 66, 160, ... . The number of free polyiamonds with holes is given by ; the number of free polyiamonds without holes is given by ; the number of fixed polyiamonds is given by ; the number of one-sided polyiamonds is given by . Some authors also call the diamond (rhombus with a 60° angle) a calisson after the French sweet of similar shape. Possible symmetries are mirror symmetry, 2-, 3-, and 6-fold rotational symmetry, and each combined with mirror symmetry. 2-fold rotational symmetry with and without mirror symmetry requires at least 2 and 4 triangles, respectively. 6-fold rotational symmetry with and without mirror symmetry requires at least 6 and 18 triangles, respectively. Asymmetry requires at least 5 triangles. 3-fold rotational symmetry without mirror symmetry requires at least 7 triangles. In the case of only mirror symmetry we can distinguish having the symmetry axis aligned with the grid or rotated 30° (requires at least 4 and 3 triangles, respectively); ditto for 3-fold rotational symmetry, combined with mirror symmetry (requires at least 18 and 1 triangles, respectively).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (1)
Pavage du plan
thumb|Pavage constitué de triangles équilatéraux et d'hexagones, dit pavage trihexagonal. thumb|Pavage hexagonal de tomettes provençales en terre cuite. Un pavage du plan est un ensemble de portions du plan, par exemple des polygones, dont l'union est le plan tout entier, sans recouvrement. Plus précisément, c'est une partition du plan euclidien par des éléments d'un ensemble fini, appelés « carreaux » (plus précisément, ce sont des compacts d’intérieur non vide).

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.