Explore l'optimalité des splines pour l'imagerie et les réseaux neuraux profonds, démontrant la sparosité et l'optimalité globale avec les activations des splines.
Couvre la préparation pour dériver l'algorithme Backprop dans des réseaux en couches en utilisant des perceptrons multicouches et la descente de gradient.
Explore les réseaux neuronaux à deux couches et la rétropropagation pour l'apprentissage des espaces de fonctionnalités et l'approximation des fonctions continues.
Couvre les Perceptrons multicouches, les neurones artificiels, les fonctions d'activation, la notation matricielle, la flexibilité, la régularisation, la régression et les tâches de classification.
Couvre un cours intensif sur l'apprentissage profond, y compris le Mark I Perceptron, les réseaux neuronaux, les algorithmes d'optimisation et les aspects de formation pratique.
Explore les critères de monotonie, la règle de L'Hopital et la continuité de Lipschitz dans les fonctions différentiables et les réseaux neuronaux profonds.