The International Linear Collider (ILC) is a proposed linear particle accelerator. It is planned to have a collision energy of 500 GeV initially, with the possibility for a later upgrade to 1000 GeV (1 TeV). Although early proposed locations for the ILC were Japan, Europe (CERN) and the USA (Fermilab), the Kitakami highland in the Iwate prefecture of northern Japan has been the focus of ILC design efforts since 2013. The Japanese government is willing to contribute half of the costs, according to the coordinator of study for detectors at the ILC. The ILC would collide electrons with positrons. It will be between 30 km and 50 km (19–31 mi) long, more than 10 times as long as the 50 GeV Stanford Linear Accelerator, the longest existing linear particle accelerator. The proposal is based on previous similar proposals from Europe, the U.S., and Japan. In a staged approach, the ILC could initially be constructed at 250 GeV, for use as a Higgs factory. Such a design would be approximately 20 km in length. Studies for an alternative project, the Compact Linear Collider (CLIC) are also underway, which would operate at higher energies (up to 3 TeV) in a machine of length similar to the ILC. These two projects, CLIC and the ILC, have been unified under the Linear Collider Collaboration. There are two basic shapes of accelerators. Linear accelerators ("linacs") accelerate elementary particles along a straight path. Circular accelerators ("synchrotrons"), such as the Tevatron, the LEP, and the Large Hadron Collider (LHC), use circular paths. Circular geometry has significant advantages at energies up to and including tens of GeV: With a circular design, particles can be effectively accelerated over longer distances. Also, only a fraction of the particles brought onto a collision course actually collide. In a linear accelerator, the remaining particles are lost; in a ring accelerator, they keep circulating and are available for future collisions.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (5)
PHYS-448: Introduction to particle accelerators
The course presents basic physics ideas underlying the workings of modern accelerators. We will examine key features and limitations of these machines as used in accelerator driven sciences like high
PHYS-751: Advanced concepts in particle accelerators
Accelerator physics covers a wide range of very exciting topics. This course presents basic physics ideas and the technologies underlying the workings of modern accelerators. An overview of the new id
PHYS-440: Particle detection
The course will cover the physics of particle detectors. It will introduce the experimental techniques used in nuclear and particle physics. The lecture includes the interaction of particles with matt
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.