Publications associées (32)

Beyond Time-Average Convergence: Near-Optimal Uncoupled Online Learning via Clairvoyant Multiplicative Weights Update

Efstratios Panteleimon Skoulakis

In this paper we provide a novel and simple algorithm, Clairvoyant Multiplicative Weights Updates (CMWU), for convergence to \textit{Coarse Correlated Equilibria} (CCE) in general games. CMWU effectively corresponds to the standard MWU algorithm but where ...
2022

Bandit Online Learning of Nash Equilibria in Monotone Games

Maryam Kamgarpour

We address online bandit learning of Nash equilibria in multi-agent convex games. We propose an algorithm whereby each agent uses only obtained values of her cost function at each joint played action, lacking any information of the functional form of her c ...
2021

Informational frictions in financial markets

Erik Hapnes

This thesis consists of three chapters on informational frictions in financial markets. The chapters analyze problems related to markets' ability to guide real investment, and what drives liquidity. Both problems are important to ensure efficient resource ...
EPFL2021

Walrasian Dynamics in Multi-unit Markets

Aris Filos Ratsikas

In a multi-unit market, a seller brings multiple units of a good and tries to sell them to a set of buyers that have monetary endowments. While a Walrasian equilibrium does not always exist in this model, natural relaxations of the concept that retain its ...
AAAI Press Palo Alto2019

Moving Horizon Demand and State Estimation for Model Predictive Perimeter Control of Large-scale Urban Networks

Nikolaos Geroliminis, Isik Ilber Sirmatel

Perimeter control schemes proposed to alleviate congestion in large-scale urban networks usually assume perfect knowledge of the accumulation state and inflow demands, both requiring information about the origins and destinations of drivers. Such assumptio ...
IEEE2019

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.