Truncated triheptagonal tilingIn geometry, the truncated triheptagonal tiling is a semiregular tiling of the hyperbolic plane. There is one square, one hexagon, and one tetradecagon (14-sides) on each vertex. It has Schläfli symbol of tr{7,3}. There is only one uniform coloring of a truncated triheptagonal tiling. (Naming the colors by indices around a vertex: 123.) Each triangle in this dual tiling, order 3-7 kisrhombille, represent a fundamental domain of the Wythoff construction for the symmetry group [7,3].
Rhombitriheptagonal tilingIn geometry, the rhombitriheptagonal tiling is a semiregular tiling of the hyperbolic plane. At each vertex of the tiling there is one triangle and one heptagon, alternating between two squares. The tiling has Schläfli symbol rr{7, 3}. It can be seen as constructed as a rectified triheptagonal tiling, r{7,3}, as well as an expanded heptagonal tiling or expanded order-7 triangular tiling. The dual tiling is called a deltoidal triheptagonal tiling, and consists of congruent kites.
Snub triheptagonal tilingIn geometry, the order-3 snub heptagonal tiling is a semiregular tiling of the hyperbolic plane. There are four triangles and one heptagon on each vertex. It has Schläfli symbol of sr{7,3}. The snub tetraheptagonal tiling is another related hyperbolic tiling with Schläfli symbol sr{7,4}. Drawn in chiral pairs, with edges missing between black triangles: The dual tiling is called an order-7-3 floret pentagonal tiling, and is related to the floret pentagonal tiling.
Truncated order-7 triangular tilingIn geometry, the order-7 truncated triangular tiling, sometimes called the hyperbolic soccerball, is a semiregular tiling of the hyperbolic plane. There are two hexagons and one heptagon on each vertex, forming a pattern similar to a conventional soccer ball (truncated icosahedron) with heptagons in place of pentagons. It has Schläfli symbol of t{3,7}. This tiling is called a hyperbolic soccerball (football) for its similarity to the truncated icosahedron pattern used on soccer balls.
Snub (geometry)In geometry, a snub is an operation applied to a polyhedron. The term originates from Kepler's names of two Archimedean solids, for the snub cube (cubus simus) and snub dodecahedron (dodecaedron simum). In general, snubs have chiral symmetry with two forms: with clockwise or counterclockwise orientation. By Kepler's names, a snub can be seen as an expansion of a regular polyhedron: moving the faces apart, twisting them about their centers, adding new polygons centered on the original vertices, and adding pairs of triangles fitting between the original edges.
Order-6 square tilingIn geometry, the order-6 square tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {4,6}. This tiling represents a hyperbolic kaleidoscope of 4 mirrors meeting as edges of a square, with six squares around every vertex. This symmetry by orbifold notation is called (3333) with 4 order-3 mirror intersections. In Coxeter notation can be represented as [6,4], removing two of three mirrors (passing through the square center) in the [6,4] symmetry.
Tetraapeirogonal tilingIn geometry, the tetraapeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of r{∞,4}. There are 3 lower symmetry uniform construction, one with two colors of apeirogons, one with two colors of squares, and one with two colors of each: The dual to this tiling represents the fundamental domains of *∞2∞2 symmetry group. The symmetry can be doubled by adding mirrors on either diagonal of the rhombic domains, creating *∞∞2 and *∞44 symmetry.
3-7 kisrhombilleIn geometry, the 3-7 kisrhombille tiling is a semiregular dual tiling of the hyperbolic plane. It is constructed by congruent right triangles with 4, 6, and 14 triangles meeting at each vertex. The image shows a Poincaré disk model projection of the hyperbolic plane. It is labeled V4.6.14 because each right triangle face has three types of vertices: one with 4 triangles, one with 6 triangles, and one with 14 triangles. It is the dual tessellation of the truncated triheptagonal tiling which has one square and one heptagon and one tetrakaidecagon at each vertex.
Truncated trioctagonal tilingIn geometry, the truncated trioctagonal tiling is a semiregular tiling of the hyperbolic plane. There are one square, one hexagon, and one hexadecagon (16-sides) on each vertex. It has Schläfli symbol of tr{8,3}. The dual of this tiling, the order 3-8 kisrhombille, represents the fundamental domains of [8,3] (*832) symmetry. There are 3 small index subgroups constructed from [8,3] by mirror removal and alternation. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors.
Order-8 triangular tilingIn geometry, the order-8 triangular tiling is a regular tiling of the hyperbolic plane. It is represented by Schläfli symbol of {3,8}, having eight regular triangles around each vertex. The half symmetry [1+,8,3] = [(4,3,3)] can be shown with alternating two colors of triangles: From [(4,4,4)] symmetry, there are 15 small index subgroups (7 unique) by mirror removal and alternation operators. Mirrors can be removed if its branch orders are all even, and cuts neighboring branch orders in half.