Truncated triapeirogonal tilingIn geometry, the truncated triapeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of tr{∞,3}. The dual of this tiling represents the fundamental domains of [∞,3], *∞32 symmetry. There are 3 small index subgroup constructed from [∞,3] by mirror removal and alternation. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors. A special index 4 reflective subgroup, is [(∞,∞,3)], (∞∞3), and its direct subgroup [(∞,∞,3)]+, (∞∞3), and semidirect subgroup [(∞,∞,3+)], (3∞).
Prisme hexagonalthumb|Un prisme hexagonal. En géométrie, le prisme hexagonal est le quatrième dans l'ensemble infini des prismes formés par des côtés carrés et deux faces hexagonales régulières. Il possède 8 faces, 12 sommets et 18 arêtes. C'est un octaèdre. Néanmoins, le terme octaèdre est principalement utilisé avec le terme « régulier » ou implicitement, par conséquent il ne signifie pas un prisme hexagonal ; dans le sens général, le terme octaèdre, n'est guère utilisé parce qu'il existe différents types qui n'ont pas grand-chose en commun excepté le nombre de faces.
Truncated tetrahexagonal tilingIn geometry, the truncated tetrahexagonal tiling is a semiregular tiling of the hyperbolic plane. There are one square, one octagon, and one dodecagon on each vertex. It has Schläfli symbol of tr{6,4}. From a Wythoff construction there are fourteen hyperbolic uniform tilings that can be based from the regular order-4 hexagonal tiling. Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 7 forms with full [6,4] symmetry, and 7 with subsymmetry.
Truncated order-8 triangular tilingIn geometry, the truncated order-8 triangular tiling is a semiregular tiling of the hyperbolic plane. There are two hexagons and one octagon on each vertex. It has Schläfli symbol of t{3,8}. The dual of this tiling represents the fundamental domains of *443 symmetry. It only has one subgroup 443, replacing mirrors with gyration points. This symmetry can be doubled to 832 symmetry by adding a bisecting mirror to the fundamental domain. From a Wythoff construction there are ten hyperbolic uniform tilings that can be based from the regular octagonal tiling.
Truncated infinite-order triangular tilingIn geometry, the truncated infinite-order triangular tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of t{3,∞}. The dual of this tiling represents the fundamental domains of *∞33 symmetry. There are no mirror removal subgroups of [(∞,3,3)], but this symmetry group can be doubled to ∞32 symmetry by adding a mirror. This hyperbolic tiling is topologically related as a part of sequence of uniform truncated polyhedra with vertex configurations (6.n.n), and [n,3] Coxeter group symmetry.
Truncated order-4 apeirogonal tilingIn geometry, the truncated order-4 apeirogonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t{∞,4}. A half symmetry coloring is tr{∞,∞}, has two types of apeirogons, shown red and yellow here. If the apeirogonal curvature is too large, it doesn't converge to a single ideal point, like the right image, red apeirogons below. Coxeter diagram are shown with dotted lines for these divergent, ultraparallel mirrors. From [∞,∞] symmetry, there are 15 small index subgroup by mirror removal and alternation.
Truncated tetraapeirogonal tilingIn geometry, the truncated tetraapeirogonal tiling is a semiregular tiling of the hyperbolic plane. There are one square, one octagon, and one apeirogon on each vertex. It has Schläfli symbol of tr{∞,4}. The dual of this tiling represents the fundamental domains of [∞,4], (*∞42) symmetry. There are 15 small index subgroups constructed from [∞,4] by mirror removal and alternation. Mirrors can be removed if its branch orders are all even, and cuts neighboring branch orders in half.
Triangle groupIn mathematics, a triangle group is a group that can be realized geometrically by sequences of reflections across the sides of a triangle. The triangle can be an ordinary Euclidean triangle, a triangle on the sphere, or a hyperbolic triangle. Each triangle group is the symmetry group of a tiling of the Euclidean plane, the sphere, or the hyperbolic plane by congruent triangles called Möbius triangles, each one a fundamental domain for the action. Let l, m, n be integers greater than or equal to 2.
Pavage triangulaire allongéIn geometry, the elongated triangular tiling is a semiregular tiling of the Euclidean plane. There are three triangles and two squares on each vertex. It is named as a triangular tiling elongated by rows of squares, and given Schläfli symbol {3,6}:e. Conway calls it a isosnub quadrille. There are 3 regular and 8 semiregular tilings in the plane. This tiling is similar to the snub square tiling which also has 3 triangles and two squares on a vertex, but in a different order.
Octagonal tilingIn geometry, the octagonal tiling is a regular tiling of the hyperbolic plane. It is represented by Schläfli symbol of {8,3}, having three regular octagons around each vertex. It also has a construction as a truncated order-8 square tiling, t{4,8}. Like the hexagonal tiling of the Euclidean plane, there are 3 uniform colorings of this hyperbolic tiling. The dual tiling V8.8.8 represents the fundamental domains of [(4,4,4)] symmetry. The regular map {8,3}2,0 can be seen as a 6-coloring of the {8,3} hyperbolic tiling.