En mathématiques, le théorème de Hall ou lemme des mariages est un résultat combinatoire qui donne une condition nécessaire et suffisante, sur une famille d'ensembles finis, pour qu'il soit possible de choisir des éléments distincts, un par ensemble. Il a été démontré par Philip Hall et a été à l'origine de la théorie du couplage dans les graphes.
On appelle système de représentants distincts d'une suite de n ensembles finis , toute suite de n éléments distincts tels que pour tout , appartienne à .
La condition est clairement nécessaire. Parmi les diverses preuves qu'elle est suffisante, celle qui semble la plus naturelle est due à Easterfield et a été redécouverte par Halmos et Vaughan.
Son nom folklorique de « lemme des mariages » est lié à l'interprétation suivante d'un système de représentants distincts : étant données n filles, si désigne l'ensemble des partis envisageables pour la k-ième, un système de représentants distincts correspond à un mariage collectif tenant compte de ces contraintes.
Un couplage parfait dans un graphe ayant un nombre pair 2n de sommets est un ensemble de n arêtes du graphe, deux-à-deux disjointes et telles que chaque sommet du graphe est incident à exactement une arête du couplage.
Théorème de Hall pour les graphes - Un graphe biparti G = (U,V;E) admet un couplage parfait si et seulement si pour tout sous-ensemble X de U (de V, respectivement), le nombre de sommets de V (de U, respectivement) adjacents à X est supérieur ou égal à la cardinalité de X.
Le théorème de Hall a été démontré par Philip Hall et a été à l'origine de la théorie du couplage dans les graphes.
Ce résultat généralise le fait, déjà remarqué en 1914 par König, que les graphes bipartis réguliers admettent un couplage parfait. Par-ailleurs, le généralise celui de Hall par une condition nécessaire et suffisante pour tous les graphes. Le théorème de Hall est en fait un cas particulier du théorème flot-max/coupe-min, dans les graphes constitués d'un graphe biparti G = (U,V;E) plus un sommet source et un sommet puits, la source étant reliée à tous les sommets de U, tandis que tous les sommets de V sont reliés au sommet puits.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
A first graduate course in algorithms, this course assumes minimal background, but moves rapidly. The objective is to learn the main techniques of algorithm analysis and design, while building a reper
En théorie des graphes, un graphe est dit biparti si son ensemble de sommets peut être divisé en deux sous-ensembles disjoints et tels que chaque arête ait une extrémité dans et l'autre dans . Un graphe biparti permet notamment de représenter une relation binaire. Il existe plusieurs façons de caractériser un graphe biparti. Par le nombre chromatique Les graphes bipartis sont les graphes dont le nombre chromatique est inférieur ou égal à 2. Par la longueur des cycles Un graphe est biparti si et seulement s'il ne contient pas de cycle impair.
vignette|Exemple d'un graphe biparti avec un couplage maximum (en bleu) et une couverture de sommets minimale (en rouge), tous les deux de taille 6. Le théorème de Kőnig est un résultat de théorie des graphes qui dit que, dans un graphe biparti, la taille du transversal minimum (i. e. de la couverture par sommets minimum) est égale à la taille du couplage maximum. La version pondérée du théorème est appelée théorème de Kőnig-. Un couplage d'un graphe G est un sous-ensemble d'arêtes de G deux-à-deux non adjacentes ; un sommet est couplé s'il est extrémité d'une arête du couplage.
En théorie des graphes, un couplage ou appariement (en anglais matching) d'un graphe est un ensemble d'arêtes de ce graphe qui n'ont pas de sommets en commun. Soit un graphe simple non orienté G = (S, A) (où S est l'ensemble des sommets et A l'ensemble des arêtes, qui sont certaines paires de sommets), un couplage M est un ensemble d'arêtes deux à deux non adjacentes. C'est-à-dire que M est une partie de l'ensemble A des arêtes telle que Un couplage maximum est un couplage contenant le plus grand nombre possible d'arêtes.
This paper initiates the study of the classic balanced graph partitioning problem from an online perspective: Given an arbitrary sequence of pairwise communication requests between n nodes, with patterns that may change over time, the objective is to servi ...
2020
,
We solve the Bin Packing problem in O^*(2^k) time, where k is the number of items less or equal to one third of the bin capacity. This parameter measures the distance from the polynomially solvable case of only large (i.e., greater than one third) items. O ...
Schloss Dagstuhl – Leibniz-Zentrum fur Informatik2022
We introduce the analog of Kramers-Kronig dispersion relations for correlators of four scalar operators in an arbitrary conformal field theory. The correlator is expressed as an integral over its "absorptive part", defined as a double discontinuity, times ...