Résumé
In a mixed-signal system (analog and digital), a reconstruction filter, sometimes called an anti-imaging filter, is used to construct a smooth analog signal from a digital input, as in the case of a digital to analog converter (DAC) or other sampled data output device. The sampling theorem describes why the input of an ADC requires a low-pass analog electronic filter, called the anti-aliasing filter: the sampled input signal must be bandlimited to prevent aliasing (here meaning waves of higher frequency being recorded as a lower frequency). For the same reason, the output of a DAC requires a low-pass analog filter, called a reconstruction filter - because the output signal must be bandlimited, to prevent imaging (meaning Fourier coefficients being reconstructed as spurious high-frequency 'mirrors'). This is an implementation of the Whittaker–Shannon interpolation formula. Ideally, both filters should be brickwall filters, constant phase delay in the pass-band with constant flat frequency response, and zero response from the Nyquist frequency. This can be achieved by a filter with a 'sinc' impulse response. While in theory a DAC outputs a series of discrete Dirac impulses, in practice, a real DAC outputs pulses with finite bandwidth and width. Both idealized Dirac pulses, zero-order held steps and other output pulses, if unfiltered, would contain spurious high-frequency replicas, "or images" of the original bandlimited signal. Thus, the reconstruction filter smooths the waveform to remove (copies) above the Nyquist limit. In doing so, it reconstructs the continuous time signal (whether originally sampled, or modelled by digital logic) corresponding to the digital time sequence. Practical filters have non-flat frequency or phase response in the pass band and incomplete suppression of the signal elsewhere. The ideal sinc waveform has an infinite response to a signal, in both the positive and negative time directions, which is impossible to perform in real time – as it would require infinite delay.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.