Résumé
In digital audio using pulse-code modulation (PCM), bit depth is the number of bits of information in each sample, and it directly corresponds to the resolution of each sample. Examples of bit depth include Compact Disc Digital Audio, which uses 16 bits per sample, and DVD-Audio and Blu-ray Disc which can support up to 24 bits per sample. In basic implementations, variations in bit depth primarily affect the noise level from quantization error—thus the signal-to-noise ratio (SNR) and dynamic range. However, techniques such as dithering, noise shaping, and oversampling can mitigate these effects without changing the bit depth. Bit depth also affects bit rate and file size. Bit depth is useful for describing PCM digital signals. Non-PCM formats, such as those using lossy compression, do not have associated bit depths. A PCM signal is a sequence of digital audio samples containing the data providing the necessary information to reconstruct the original analog signal. Each sample represents the amplitude of the signal at a specific point in time, and the samples are uniformly spaced in time. The amplitude is the only information explicitly stored in the sample, and it is typically stored as either an integer or a floating point number, encoded as a binary number with a fixed number of digits: the sample's bit depth, also referred to as word length or word size. The resolution indicates the number of discrete values that can be represented over the range of analog values. The resolution of binary integers increases exponentially as the word length increases. Adding one bit doubles the resolution, adding two quadruples it, and so on. The number of possible values that an integer bit depth can represent can be calculated by using 2n, where n is the bit depth. Thus, a 16-bit system has a resolution of 65,536 (216) possible values. Integer PCM audio data is typically stored as signed numbers in two's complement format. Today, most audio s and digital audio workstations (DAWs) support PCM formats with samples represented by floating point numbers.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.