Algebraic geometry codes, often abbreviated AG codes, are a type of linear code that generalize Reed–Solomon codes. The Russian mathematician V. D. Goppa constructed these codes for the first time in 1982. The name of these codes has evolved since the publication of Goppa's paper describing them. Historically these codes have also been referred to as geometric Goppa codes; however, this is no longer the standard term used in coding theory literature. This is due to the fact that Goppa codes are a distinct class of codes which were also constructed by Goppa in the early 1970s. These codes attracted interest in the coding theory community because they have the ability to surpass the Gilbert–Varshamov bound; at the time this was discovered, the Gilbert–Varshamov bound had not been broken in the 30 years since its discovery. This was demonstrated by Tfasman, Vladut, and Zink in the same year as the code construction was published, in their paper "Modular curves, Shimura curves, and Goppa codes, better than Varshamov-Gilbert bound". The name of this paper may be one source of confusion affecting references to algebraic geometry codes throughout 1980s and 1990s coding theory literature. In this section the construction of algebraic geometry codes is described. The section starts with the ideas behind Reed–Solomon codes, which are used to motivate the construction of algebraic geometry codes. Algebraic geometry codes are a generalization of Reed–Solomon codes. Constructed by Irving Reed and Gustave Solomon in 1960, Reed–Solomon codes use univariate polynomials to form codewords, by evaluating polynomials of sufficiently small degree at the points in a finite field . Formally, Reed–Solomon codes are defined in the following way. Let . Set positive integers . Let The Reed–Solomon code is the evaluation code Goppa observed that can be considered as an affine line, with corresponding projective line . Then, the polynomials in (i.e. the polynomials of degree less than over ) can be thought of as polynomials with pole allowance no more than at the point at infinity in .
Pascal Frossard, Nikolaos Thomos, Hyung Gon Park