Résumé
Color digital images are made of pixels, and pixels are made of combinations of primary colors represented by a series of code. A channel in this context is the grayscale image of the same size as a color image, made of just one of these primary colors. For instance, an image from a standard digital camera will have a red, green and blue channel. A grayscale image has just one channel. In geographic information systems, channels are often referred to as raster bands. Another closely related concept is feature maps, which are used in convolutional neural networks. In the digital realm, there can be any number of conventional primary colors making up an image; a channel in this case is extended to be the grayscale image based on any such conventional primary color. By extension, a channel is any grayscale image of the same dimension as and associated with the original image. Channel is a conventional term used to refer to a certain component of an image. In reality, any image format can use any algorithm internally to store images. For instance, GIF images actually refer to the color in each pixel by an index number, which refers to a table where three color components are stored. However, regardless of how a specific format stores the images, discrete color channels can always be determined, as long as a final color image can be rendered. The concept of channels is extended beyond the visible spectrum in and hyperspectral imaging. In that context, each channel corresponds to a range of wavelengths and contains spectroscopic information. The channels can have multiple widths and ranges. Three main channel types (or color models) exist, and have respective strengths and weaknesses. An has three channels: red, green, and blue. RGB channels roughly follow the color receptors in the human eye, and are used in computer displays and s. If the RGB image is 24-bit (the industry standard as of 2005), each channel has 8 bits, for red, green, and blue—in other words, the image is composed of three images (one for each channel), where each image can store discrete pixels with conventional brightness intensities between 0 and 255.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.