Colin Neil JonesColin Jones is an Associate Professor in the Automatic Control Laboratory at the Ecole Polytechnique Federale de Lausanne (EPFL) in Switzerland. He was a Senior Researcher at the Automatic Control Lab at ETH Zurich until 2011 and obtained a PhD in 2005 from the University of Cambridge for his work on polyhedral computational methods for constrained control. Prior to that, he was at the University of British Columbia in Canada, where he took a BASc and MASc in Electrical Engineering and Mathematics. Colin has worked in a variety of industrial roles, ranging from commercial building control to the development of custom optimization tools focusing on retail human resource scheduling. His current research interests are in the theory and computation of predictive control and optimization, and their application to green energy generation, distribution and management.
Michael Christoph GastparMichael Gastpar is a (full) Professor at EPFL. From 2003 to 2011, he was a professor at the University of California at Berkeley, earning his tenure in 2008. He received his Dipl. El.-Ing. degree from ETH Zürich, Switzerland, in 1997 and his MS degree from the University of Illinois at Urbana-Champaign, IL, USA, in 1999. He defended his doctoral thesis at EPFL on Santa Claus day, 2002. He was also a (full) Professor at Delft University of Technology, The Netherlands. His research interests are in network information theory and related coding and signal processing techniques, with applications to sensor networks and neuroscience. He is a Fellow of the IEEE. He is the co-recipient of the 2013 Communications Society & Information Theory Society Joint Paper Award. He was an Information Theory Society Distinguished Lecturer (2009-2011). He won an ERC Starting Grant in 2010, an Okawa Foundation Research Grant in 2008, an NSF CAREER award in 2004, and the 2002 EPFL Best Thesis Award. He has served as an Associate Editor for Shannon Theory for the IEEE Transactions on Information Theory (2008-11), and as Technical Program Committee Co-Chair for the 2010 International Symposium on Information Theory, Austin, TX.
Martin VetterliMartin Vetterli a été nommé Président de l'École polytechnique fédérale de Lausanne (EPFL) par le Conseil fédéral à l’issue d’un processus de sélection mené par le Conseil des EPF - qui l'a désigné à l'unanimité.
Né à Soleure le 4 octobre 1957, Martin Vetterli a suivi sa scolarité et effectué sa maturité dans le canton de Neuchâtel. Ingénieur en génie électrique de l’ETHZ (1981), diplômé de l’Université de Stanford (1982) et docteur en sciences de l’EPFL (1986), Martin Vetterli a enseigné à Columbia University comme professeur assistant puis associé. Il a ensuite été nommé professeur ordinaire au département du génie électrique et des sciences de l’informatique de l’Université de Berkeley, avant de revenir à l’EPFL en tant que professeur ordinaire à l’âge de 38 ans. Il a également enseigné à l’ETHZ et à l’Université de Stanford.
Ses activités de recherche centrées sur le génie électrique, les sciences de l’informatique et les mathématiques appliquées lui ont valu de nombreuses récompenses nationales et internationales, parmi lesquelles le Prix Latsis National, en 1996. Il est Fellow de l’Association for Computing Machinery et de l'Institute of Electrical and Electronics Engineers et membre de la National Academy of Engineering (NAE) notamment. Martin Vetterli a publié plus de 170 articles et trois ouvrages de référence.
Ses travaux sur la théorie des ondelettes, utilisées dans le traitement du signal, sont reconnus par ses pairs comme étant d’une portée majeure, et ses domaines de prédilection, comme la compression des images et vidéos ou les systèmes de communication auto-organisés, sont au cœur du développement des nouvelles technologies de l’information. En tant que directeur fondateur du Pôle de Recherche National Systèmes mobiles d’information et de communication, le professeur Vetterli est un fervent défenseur de la recherche transdisciplinaire.
Martin Vetterli connaît l’EPFL de l’intérieur. Alumnus de l’Ecole, il y enseigne depuis 1995, a été le vice-président chargé des relations internationales puis des affaires institutionnelles de l’Ecole entre 2004 à 2011, et doyen de la Faculté Informatique et Communication en 2011 et 2012. En parallèle à sa fonction de président du Conseil national de la recherche du Fonds national suisse qu’il a occupé de 2013 à 2016, il dirige le Laboratoire de Communications Audiovisuelles (LCAV) de l’EPFL depuis 1995.
Martin Vetterli a accompagné plus de 60 doctorants en Suisse et aux Etats-Unis pendant leur thèse et se fait un point d’honneur de suivre l’évolution de leur parcours au plus haut niveau, académique ou dans le monde entrepreneurial.
L’ingénieur est l’auteur d’une cinquantaine de brevets qui ont conduit à la création de plusieurs startups issues de son laboratoire, comme Dartfish ou Illusonic, ainsi qu’à des transferts de technologie par le biais de vente de brevets (Qualcomm). Il encourage activement les jeunes chercheurs à poursuivre ces efforts et commercialiser les résultats de leurs travaux.
Roland LongchampRoland Longchamp is Professor of Automatic Control and Director of the Automatic Control Laboratory at the Swiss Federal Institute of Technology in Lausanne (EPFL). He received his Diploma in Electrical Engineering and his Ph.D. degree both from EPFL. He was appointed as Postdoctoral Fellow, first at the Information Systems Laboratory, Stanford University, and then at the Decision and Control Laboratory, University of Illinois at Urbana-Champaign, working in the areas of nonlinear systems, estimation theory and predictive control. He was with the Asea Brown Boveri Company in Turgi, Switzerland, involved in the field of on-line control of large power systems. He joined EPFL in 1983, where his current research interests include control of linear systems, adaptive control, robust control, with applications to mechatronic systems. He served as Head of the Mechanical Engineering Department in 1991-1993 and as Director of the Automatic Control Laboratory for the periods 1986-1993 and 1997-2003. He is Editor of the EPFL Press Mechanical Engineering Series since 1996.
Alireza KarimiAlireza Karimi received his B. Sc. and M. Sc. degrees in Electrical Engineering in 1987 and 1990, respectively, from Amir Kabir University (Tehran Polytechnic). Then he received his DEA and Ph. D. degrees both on Automatic Control from Institut National Polytechnique de Grenoble (INPG) in 1994 and 1997, respectively. He was Assistant Professor at Electrical Engineering Department of Sharif University of Technology in Teheran from 1998 to 2000. Then he joined Automatic Laboratory of Swiss Federal Institute of Technology at Lausanne, Switzerland. He is currently Professor of Automatic Control and the head of "Data-Driven Modelling and Control" group. His research interests include data-driven controller tuning and robust control with application to mechatronic systems and electrical grids.
Jean-Philippe ThiranJean-Philippe Thiran was born in Namur, Belgium, in August 1970. He received the Electrical Engineering degree and the PhD degree from the Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium, in 1993 and 1997, respectively. From 1993 to 1997, he was the co-ordinator of the medical image analysis group of the Communications and Remote Sensing Laboratory at UCL, mainly working on medical image analysis. Dr Jean-Philippe Thiran joined the Signal Processing Institute (ITS) of the Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland, in February 1998 as a senior lecturer. He was promoted to Assistant Professor in 2004, to Associate Professor in 2011 and is now a Full Professor since 2020. He also holds a 20% position at the Department of Radiology of the University of Lausanne (UNIL) and of the Lausanne University Hospital (CHUV) as Associate Professor ad personam. Dr Thiran's current scientific interests include
Computational medical imaging: acquisition, reconstruction and analysis of imaging data, with emphasis on regularized linear inverse problems (compressed sensing, convex optimization). Applications to medical imaging: diffusion MRI, ultrasound imaging, inverse planning in radiotherapy, etc.Computer vision & machine learning: image and video analysis, with application to facial expression recognition, eye tracking, lip reading, industrial inspection, medical image analysis, etc.