Résumé
En mécanique classique du point matériel, un champ de forces est dit champ de force centrale, de centre O s'il vérifie . Le support de la force passe par le centre fixe O. L'étude du mouvement à force centrale fut un des premiers problèmes de mécanique résolu par Newton. Si la force centrale est conservative, elle dérive d'une énergie potentielle (scalaire), notée . Souvent la constante est choisie conventionnellement, si cela est possible, pour que . Robert Hooke (1635-1703) dans sa correspondance de novembre et décembre 1679 avec Isaac Newton, a énoncé la loi de ce champ de force centripète : Le coefficient k est dit constante de rappel du ressort (ou raideur du ressort) ; il s'exprime en . L'énergie potentielle associée est conventionnellement prise égale à . note : Hooke considéra le mouvement du pendule sphérique pour de très petites oscillations, comme dû au mouvement de la petite masse sous l'action d'un champ central avec , l étant le rayon de la sphère. Il généralisait ainsi le travail de Galilée sur le pendule simple (1601). L'observation en est très aisée car la trajectoire est une simple ellipse ayant pour centre le point O (en France, on parle d'ellipse de Lissajous, mais il s'agit plus correctement d'ellipse de Galilée-Hooke). Remarque : si les oscillations ne sont pas très petites, il s'agit du pendule sphérique, beaucoup plus difficile à étudier. Remarque : Pour l'anecdote, durant tout l’hiver 1679/1680, Robert Hooke avait engagé une correspondance avec Newton. De cette correspondance naissait en 1684 le manuscrit "de Motu corporum gyrum", que l’on peut assimiler au germe des "Principia". Notons que Newton n’y fera aucune mention de sa "collaboration" avec R. Hooke. Dans un manuscrit de 1685, Robert Hooke propose une méthode de calcul des orbites qu’il applique avec succès au calcul du mouvement d’un pendule conique (figure de sept 1685 - manuscrits Trinity college) Isaac Newton démontra en 1685 le théorème dit de Newton-Gauss (voir Théorème de Gauss appliqué à l'électrostatique) : la loi universelle d'attraction gravitationnelle entre un astre sphérique, de centre O, de masse M et de rayon R, sur une petite masse ponctuelle m située en P, extérieur à la sphère (donc r = OP > R) se réduit à la simple force centrale .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.