Concept

Méthode Borda

Résumé
La méthode Borda est un système de vote pondéré. Ses premières utilisations sont très anciennes, puisqu'elle a été utilisée par le sénat romain jusqu'à l'an 105. Elle a été formalisée en 1770 par Jean-Charles de Borda, un contemporain de Condorcet. La méthode qu'il proposait était une alternative à la méthode Condorcet que Borda jugeait certes équitable mais difficile à mettre en œuvre. Une polémique a opposé ces deux hommes, chacun défendant sa méthode comme étant la plus équitable. Elle est utilisée pour des élections à un siège ou plusieurs sièges. Ce système de vote est populaire aux États-Unis pour attribuer des prix sportifs. C'est par cette méthode que sont élus, entre autres, le meilleur joueur de la Ligue majeure de baseball et l'équipe championne de football américain collégial. Cette méthode est connue en Europe grâce au concours Eurovision de la chanson. On retrouve ce système de vote pour les élections parlementaires à Nauru et uniquement pour désigner, au sein de la Maneaba ni Maungatabu (Parlement), les trois ou quatre candidats à la présidentielle des Kiribati. On choisit un nombre n inférieur ou égal au nombre de candidats C. Chaque électeur construit alors une liste de n candidats par ordre de préférence. Au premier de la liste, on attribue n points, au second n - 1 points, et ainsi de suite, le n-ième de la liste se voyant attribuer 1 point. Le score d'un candidat est la somme de tous les points qui lui ont été attribués. Le ou les candidats dont les scores sont les plus élevés remportent les élections. Ainsi le score du candidat est où représente le nombre de fois où le candidat est classé en position . Dans le cas où n = 1, on retrouve le système de scrutin majoritaire à un tour. Dans le cas où C est très grand et où chacun peut arrêter sa liste où il veut, on retrouve le système de vote par approbation. En effet, pour C grand, les candidats que l'on a classés reçoivent sensiblement le même nombre de points tandis que les candidats non classés se voient attribuer zéro point.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.