Publications associées (23)

MultiModN- Multimodal, Multi-Task, Interpretable Modular Networks

Martin Jaggi, Mary-Anne Hartley, Vinitra Swamy, Jibril Albachir Frej, Thierry Bossy, Thijs Vogels, Malika Satayeva

Predicting multiple real-world tasks in a single model often requires a particularly diverse feature space. Multimodal (MM) models aim to extract the synergistic predictive potential of multiple data types to create a shared feature space with aligned sema ...
2023

Generalizing Bulk-Synchronous Parallel Processing for Data Science: From Data to Threads and Agent-Based Simulations

Zilu Tian

Agent-based simulations have been widely applied in many disciplines, by scientists and engineers alike. Scientists use agent-based simulations to tackle global problems, including alleviating poverty, reducing violence, and predicting the impact of pandem ...
EPFL2023

Efficient geometric integrators for nonadiabatic quantum dynamics. II. The diabatic representation

Jiri Vanicek, Seonghoon Choi, Julien Roulet

Exact nonadiabatic quantum evolution preserves many geometric properties of the molecular Hilbert space. In the first paper of this series ["Paper I," S. Choi and J. Vaníček, J. Chem. Phys. 150, 204112 (2019)], we presented numerical integrators of arbitra ...
2019

Compilation and Code Optimization for Data Analytics

Amir Shaikhha

The trade-offs between the use of modern high-level and low-level programming languages in constructing complex software artifacts are well known. High-level languages allow for greater programmer productivity: abstraction and genericity allow for the same ...
EPFL2018

Specialising Parsers for Queries

Manohar Jonnalagedda

Many software systems consist of data processing components that analyse large datasets to gather information and learn from these. Often, only part of the data is relevant for analysis. Data processing systems contain an initial preprocessing step that fi ...
EPFL2016

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.