vignette|droite|250px|Prototype de panneaux OLED.
Une diode électroluminescente organique ou DELO — usuellement désignée par son acronyme anglais OLED, pour organic light-emitting diode — est un composant électronique qui permet de produire de la lumière. La structure de la diode est relativement simple puisque c'est une superposition de plusieurs couches semi-conductrices organiques entre deux électrodes dont l'une (au moins) est transparente.
La technologie OLED est utilisée pour l'affichage dans le domaine des écrans plats et son utilisation comme panneau d'éclairage est une autre application potentielle. En raison des propriétés des matériaux utilisés pour concevoir ces diodes, la technologie OLED possède des avantages intéressants par rapport à la technologie dominante des afficheurs à cristaux liquides (LCD). En effet, la propriété électroluminescente de l'OLED ne nécessite pas l'introduction d'un rétroéclairage ce qui confère à l'écran des niveaux de gris plus profonds et une épaisseur moindre. La flexibilité de ces matériaux (FOLED pour ) offre aussi la possibilité de réaliser un écran souple et ainsi de l'intégrer sur des supports très variés comme les plastiques.
Le premier brevet est déposé en 1987 par la société Kodak et la première application commerciale est apparue vers 1997.
André Paul Bernanose et son équipe ont produit de la lumière à base de matériaux organiques, en soumettant des couches minces de cristal d’acridine orange et de quinacrine à un courant alternatif de tension élevée. En 1960, des chercheurs du laboratoire Dow Chemical ont développé des cellules électroluminescentes dopées à l’anthracène, alimentées par un courant alternatif.
La faible conductivité électrique de ces matériaux limitait la quantité de lumière émise, jusqu’à l’apparition de nouveaux matériaux comme le polyacétylène, le polypyrrole et la polyaniline « noircie ». En 1963, dans une série de publications, l’équipe dirigée par Weiss indique que le polypyrrole oxydé et dopé à l’iode possède une très bonne conductivité : .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Les écrans à plasma fonctionnent de façon similaire aux tubes d'éclairage fluorescents (improprement appelés « néons »). Ils utilisent l’électricité pour illuminer un gaz. thumb|300px|Schéma de principe Le gaz utilisé est un mélange de gaz nobles (argon 90 % et xénon 10 %). Ce mélange de gaz est inerte et inoffensif. Pour qu'il émette de la lumière on lui applique un courant électrique qui le transforme en plasma, un fluide ionisé dont les atomes ont perdu un ou plusieurs de leurs électrons et ne sont plus électriquement neutres, alors que les électrons ainsi libérés forment un nuage autour.
thumb|Diodes de différentes couleurs.|alt= thumb|upright|Symbole de la diode électroluminescente.|alt= Une diode électroluminescente (abrégé en DEL en français, ou LED, de llight-emitting diode) est un dispositif opto-électronique capable d'émettre de la lumière lorsqu'il est parcouru par un courant électrique. Une diode électroluminescente ne laisse passer le courant électrique que dans un seul sens et produit un rayonnement monochromatique ou polychromatique non cohérent par conversion d'énergie électrique lorsqu'un courant la traverse.
La technique d'affichage est le moyen de présentation d'une information au moyen de divers phénomènes physiques ou chimiques. Les premiers afficheurs furent statiques (pierres, affiches, affichage libre, peinture). Le premier afficheur dynamique est peut-être le cadran solaire. Le développement de la mécanique permit l'affichage mécanique de l'heure (horlogerie). La commande par câble permit l'affichage à distance pour la signalisation des chemins de fer.
Comprendre le fonctionnement des enseignes et des afficheurs à LED, depuis les petites enseignes à motifs fixes jusqu'aux écrans géants à LED. Apprendre à les fabriquer et à les programmer les microc
This course aims at understanding classical and non-classical nucleation theory, at reviewing different techniques for the synthesis of nanomaterials (mainly nanoparticles and thin films) and at learn
Introduction to the physical concepts involved in the description of optical and electronic transport properties of thin-film semiconductor materials found in many large-area applications (solar cells
This course addresses the implementation of organic and printed electronics technologies using large area manufacturing techniques. It will provide knowledge on materials, printing techniques, devices
Explore les mécanismes d'émission OLED, les structures des appareils, l'extraction de la lumière, les méthodes de conduite, les applications et les défis.
Couvre les fondamentaux des OLED, y compris le fonctionnement de base, la dynamique des excitons, le transport de charge et les voies d'émission.
Couvre les bases du logiciel PC1D pour simuler les cellules solaires.
GaN exhibits a decomposition tendency for temperatures far below its melting point and common growth temperatures used in metal-organic vapour phase epitaxy (MOVPE).This characteristic is known to be a major obstacle for realising GaN bulk substrate. There ...
In an era where portable electronic devices are indispensable for a wide range of activities, the need for displays that provide both long-lasting battery life and excellent visibility in different lighting conditions is increasingly important. Emissive di ...
Sensing and imaging of light in the shortwave infrared (SWIR) range is increasingly used in various fields, including bio-imaging, remote sensing, and semiconductor process control. SWIR-sensitive organic photodetectors (OPDs) are promising because organic ...