thumb|upright=1.4|Photo d'un tube de Crookes. Les électrons circulent en ligne droite de la cathode, sur la gauche, mise en évidence par l'ombre portée de la croix sur la paroi fluorescente, à droite. L'anode est en bas. Un tube de Crookes est un des premiers tubes à décharge électriques expérimentaux, inventé par le physicien britannique William Crookes et d'autres entre les années 1869 et 1875 durant lesquelles les rayons cathodiques ont été découverts. Évolution du tube de Geissler, il consiste en un tube de verre sous vide partiel de différentes formes possibles, avec deux électrodes de métal, une à chaque extrémité. Lorsqu'une forte tension électrique est appliquée entre les électrodes, les électrons traversent le tube en ligne droite depuis la cathode vers l'anode. Il fut utilisé par William Crookes, Johann Hittorf, Juliusz Plücker, Eugen Goldstein, Heinrich Hertz, ou encore Philipp Lenard entre autres afin d'étudier les propriétés des rayons cathodiques, recherche qui culmina en 1897 lorsque Joseph John Thomson découvrit que les rayons cathodiques étaient constitués de particules chargées négativement qu'il baptisa « électrons ». Au début du , les tubes de Crookes sont utilisés pour montrer (indirectement) les rayons cathodiques. Le savant Wilhelm Röntgen découvrit les rayons X grâce au tube de Crookes en 1895. L'appellation est aussi utilisée pour la première génération de tubes à rayons X à cathodes froides, qui est issue des tubes de Crookes expérimentaux et qui fut utilisée jusque dans les années 1920. left|thumb|Schéma d'un tube de Crookes. Les tubes de Crookes étaient des tubes à cathode froide, ce qui veut dire qu'ils ne comportaient pas de filament chauffant comme on en mettra plus tard dans les tubes électroniques pour générer des électrons. Dans le tube de Crookes, les électrons sont générés par l'ionisation du gaz résiduel excité par une tension continue de quelques kilovolts à , appliquée entre les deux électrodes. Cette tension est fournie par une bobine de Ruhmkorff.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (4)
PHYS-108: General physics : fluids and electromagnetism
Le cours couvre deux grands chapitres de la physique: l'étude des fluides et l'électromagnétisme. Une introduction aux ondes est également faite pour pouvoir étudier les solutions des équations de l'h
PHYS-101(a): General physics : mechanics
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
ME-341: Heat and mass transfer
This course covers fundamentals of heat transfer and applications to practical problems. Emphasis will be on developing a physical and analytical understanding of conductive, convective, and radiative
Afficher plus
Séances de cours associées (33)
Le théorème de Bernoulli: Applications et lois de conservation
Explore le théorème de Bernoulli, les lois de conservation et les applications des tubes Venturi dans la dynamique des fluides.
Série Printempss: Heures de contact 7
Couvre la mécanique des ressorts de série et les forces exercées par eux.
Points d'équilibre et stabilité
Explore les points d'équilibre et la stabilité dans les systèmes mécaniques avec plusieurs degrés de liberté.
Afficher plus
Publications associées (34)

Quantifying mass transport limitations in a microfluidic CO2 electrolyzer with a gas diffusion cathode

Sophia Haussener, Venu Gopal Agarwal

A gas diffusion electrode (GDE) based CO2 electrolyzer shows enhanced CO2 transport to the catalyst surface, significantly increasing current density compared to traditional planar immersed electrodes. A two-dimensional model for the cathode side of a micr ...
2024

A variable stiffness magnetic catheter made of a conductive shape memory polymer for minimally invasive surgery

Dario Floreano, Yegor Piskarev, Jun Shintake

A hollow variable stiffness thread including a flexible inner tube, a conductive shape memory polymer (CSMP) layer arranged around the inner tube forming a variable stiffness zone, a flexible encapsulation layer arranged around the CSMP layer, and a first ...
2023

Elucidating the role of the InGaN UL in the efficiency of InGaN based light-emitting diodes

Camille Haller

Blue III-nitride light-emitting diodes (LEDs) are widely used nowadays in solid-state lighting, as white light can be produced by combining yellow phosphors and blue LEDs. This technology has the advantage to have a higher luminous efficiency than incandes ...
EPFL2019
Afficher plus
Concepts associés (16)
Matière
En physique, la matière est ce qui compose tout corps (objet ayant une réalité spatiale et massique). C'est-à-dire plus simplement une substance matérielle et donc occupe de l'espace. Les quatre états les plus communs sont l'état solide, l'état liquide, l'état gazeux et l'état plasma. Réciproquement, en physique, tout ce qui a une masse est de la matière. La matière ordinaire qui nous entoure est formée principalement de baryons et constitue la matière baryonique.
Tube à rayons X
Les tubes à rayons X sont des dispositifs permettant de produire des rayons X, en général pour trois types d'applications : radiographie et tomographie (, science des matériaux) ; Cristallographie aux rayons X (diffraction de rayons X, voir aussi l'article Diffractomètre) ; analyse chimique élémentaire par spectrométrie de fluorescence des rayons X. Il existe plusieurs types de tubes. Quel que soit le type de tube, la génération des rayons X se fait selon le même principe.
Générateur de rayons X
Un générateur de rayons X est un appareil qui est utilisé pour produire des rayons X. Ces appareils sont utilisés dans les domaines de la radiologie humaine, dentaire et industrielle et possèdent des spécifications très variables en fonction de leur application. Un générateur de rayons X est constitué d'un générateur haute tension (entre et plusieurs MV dans les accélérateurs linéaires) qui alimente un tube à rayons X.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.