A mathematical or physical process is time-reversible if the dynamics of the process remain well-defined when the sequence of time-states is reversed. A deterministic process is time-reversible if the time-reversed process satisfies the same dynamic equations as the original process; in other words, the equations are invariant or symmetrical under a change in the sign of time. A stochastic process is reversible if the statistical properties of the process are the same as the statistical properties for time-reversed data from the same process. In mathematics, a dynamical system is time-reversible if the forward evolution is one-to-one, so that for every state there exists a transformation (an involution) π which gives a one-to-one mapping between the time-reversed evolution of any one state and the forward-time evolution of another corresponding state, given by the operator equation: Any time-independent structures (e.g. critical points or attractors) which the dynamics give rise to must therefore either be self-symmetrical or have symmetrical images under the involution π. In physics, the laws of motion of classical mechanics exhibit time reversibility, as long as the operator π reverses the conjugate momenta of all the particles of the system, i.e. (T-symmetry). In quantum mechanical systems, however, the weak nuclear force is not invariant under T-symmetry alone; if weak interactions are present, reversible dynamics are still possible, but only if the operator π also reverses the signs of all the charges and the parity of the spatial co-ordinates (C-symmetry and P-symmetry). This reversibility of several linked properties is known as CPT symmetry. Thermodynamic processes can be reversible or irreversible, depending on the change in entropy during the process.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.