Euclidean lattices are mathematical objects of increasing interest in the fields of cryptography and error-correcting codes. This doctoral thesis is a study on high-dimensional lattices with the motivation to understand how efficient they are in terms of b ...
In this thesis, we concentrate on advancing high-level behavioral control policies for robotic systems within the framework of Dynamical Systems (DS). Throughout the course of this research, a unifying thread weaving through diverse fields emerges, and tha ...
Human babies have a natural desire to interact with new toys and objects, through which they learn how the world around them works, e.g., that glass shatters when dropped, but a rubber ball does not. When their predictions are proven incorrect, such as whe ...
Visual estimates of stimulus features are systematically biased toward the features of previously encountered stimuli. Such serial dependencies have often been linked to how the brain maintains perceptual continuity. However, serial dependence has mostly b ...
Modern manufacturing engineering is based on a ``design-through-analysis'' workflow. According to this paradigm, a prototype is first designed with Computer-aided-design (CAD) software and then finalized by simulating its physical behavior, which usually i ...
We study the issue of data consistency in distributed systems. Specifically, we consider a distributed system that replicates its data at multiple sites, which is prone to partitions, and which is assumed to be available (in the sense that queries are alwa ...
Kan spectra provide a combinatorial model for the stable homotopy category. They were introduced by Dan Kan in 1963 under the name semisimplicial spectra. A Kan spectrum is similar to a pointed simplicial set, but it has simplices in negative degrees as we ...
We prove that every elementary (infinity, 1)-topos has a natural number object. We achieve this by defining the loop space of the circle and showing that we can construct a natural number object out of it. Part of the proof involves showing that various de ...
Machine-learning in quantum chemistry is currently booming, with reported applications spanning all molecular properties from simple atomization energies to complex mathematical objects such as the many-body wavefunction. Due to its central role in density ...
This review paper addresses the so called geometric multiscale approach for the numerical simulation of blood flow problems, from its origin (that we can collocate in the second half of '90s) to our days. By this approach the blood fluid-dynamics in the wh ...