Pure type systemNOTOC In the branches of mathematical logic known as proof theory and type theory, a pure type system (PTS), previously known as a generalized type system (GTS), is a form of typed lambda calculus that allows an arbitrary number of sorts and dependencies between any of these. The framework can be seen as a generalisation of Barendregt's lambda cube, in the sense that all corners of the cube can be represented as instances of a PTS with just two sorts. In fact, Barendregt (1991) framed his cube in this setting.
Lambda cubethumb|Le lambda-cube. Initialement proposé par Henk Barendregt, le -cube permet de visualiser les différentes dimensions pour lesquelles le calcul des constructions apporte une généralisation par rapport au lambda-calcul simplement typé où un terme ne peut dépendre que d'un autre terme. Chaque axe représente une nouvelle forme d'abstraction : Terme dépendant de type : le polymorphisme ; Type dépendant de type : présence d'opérateurs de types ; Type dépendant de terme. Catégorie:Calculabilité Catégorie:Théor
Unificationvignette|Unifier deux termes, c'est les rendre identiques en remplaçant les variables. En informatique et en logique, l'unification est un processus algorithmique qui, étant donnés deux termes, trouve une substitution qui appliquée aux deux termes les rend identiques. Par exemple, et peuvent être rendus identiques par la substitution et , qui donne quand on l'applique à chacun de ces termes le terme .
Function typeIn computer science and mathematical logic, a function type (or arrow type or exponential) is the type of a variable or parameter to which a function has or can be assigned, or an argument or result type of a higher-order function taking or returning a function. A function type depends on the type of the parameters and the result type of the function (it, or more accurately the unapplied type constructor · → ·, is a higher-kinded type).
Système FLe est un formalisme logique qui permet d'exprimer de façon très riche et très rigoureuse des fonctions et d'y démontrer formellement des propriétés difficiles. Plus précisément, le (également connu sous le nom de lambda-calcul polymorphe ou de lambda-calcul du second ordre) est une extension du lambda-calcul simplement typé introduite indépendamment par le logicien Jean-Yves Girard et par l'informaticien John C. Reynolds. Ce système se distingue du lambda-calcul simplement typé par l'existence d'une quantification universelle sur les types qui permet d'exprimer du polymorphisme.
Kind (type theory)In the area of mathematical logic and computer science known as type theory, a kind is the type of a type constructor or, less commonly, the type of a higher-order type operator. A kind system is essentially a simply typed lambda calculus "one level up", endowed with a primitive type, denoted and called "type", which is the kind of any data type which does not need any type parameters. A kind is sometimes confusingly described as the "type of a (data) type", but it is actually more of an arity specifier.
Idris (programming language)Idris is a purely-functional programming language with dependent types, optional lazy evaluation, and features such as a totality checker. Idris may be used as a proof assistant, but is designed to be a general-purpose programming language similar to Haskell. The Idris type system is similar to Agda's, and proofs are similar to Coq's, including tactics (theorem proving functions/procedures) via elaborator reflection. Compared to Agda and Coq, Idris prioritizes management of side effects and support for embedded domain-specific languages.
Démonstration constructiveUne première vision d'une démonstration constructive est celle d'une démonstration mathématique qui respecte les contraintes des mathématiques intuitionnistes, c'est-à-dire qui ne fait pas appel à l'infini, ni au principe du tiers exclu. Ainsi, démontrer l'impossibilité de l'inexistence d'un objet ne constitue pas une démonstration constructive de son existence : il faut pour cela en exhiber un et expliquer comment le construire. Si une démonstration est constructive, on doit pouvoir lui associer un algorithme.
Vérification formelleIn the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics. Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
Product typeIn programming languages and type theory, a product of types is another, compounded, type in a structure. The "operands" of the product are types, and the structure of a product type is determined by the fixed order of the operands in the product. An instance of a product type retains the fixed order, but otherwise may contain all possible instances of its primitive data types. The expression of an instance of a product type will be a tuple, and is called a "tuple type" of expression.