Paul MuraltPaul Muralt received a diploma in experimental physics in 1978 at the Swiss Federal Institute of Technology ETH in Zurich. He accomplished his Ph.D. thesis in the field of commensurate-incommensurate phase transitions at the Solid State Laboratory of ETH. In the years 1984 and 1985 he held a post doctoral position at the IBM Research Laboratory in Zurich where he pioneered the application of scanning tunneling microscopy to surface potential imaging. In 1987, after a stay at the Free University of Berlin, he joined the Balzers group in Liechtenstein. He specialized in sputter deposition techniques, and managed since 1991 a department for development and applications of Physical Vapor Deposition and PECVD processes. In 1993, he joined the Ceramics Laboratory of EPFL in Lausanne. AS group leader for thin films and MEMS devices, he specialized in piezoelectric and pyroelectric MEMS with mostly Pb(Zr,Ti)O3 and AlN thin film. His research interests are in thin film growth in general, and more specifically in property assessment of small ferroelectric structures, in integration issues of ferroelectric and other polar materials, property-microstructure relationships, and applications of polar materials in semiconductor and micro-electro-mechanical devices. More recently he extended his interests to oxide thin films of ionic conductors. The focus in piezoelectric thin films was directed towards AlN-ScN alloys. He gives lectures in thin film processing, micro fabrication, and surface analysis. He authored or co-authored more than 230 scientific articles. He became Fellow of IEEE in 2013. In 2005, he received an outstanding achievement award at the International Symposium on Integrated Ferroelectrics (ISIF), and in 2016 the B.C. Sawyer Memorial award.
Chairman of the International Workshops on Piezoelectric MEMS(http://www.piezomems2011.org/) Véronique MichaudBackground: 1994 Habilitation à diriger des recherches ( INPG, France) 1991 PhD in Materials Engineering ( MIT, USA) 1987 Ingénieur Civil des Mines ( Ecole des Mines de Paris, France) Activités: Depuis Janvier 2018: Vice-Doyenne de la faculté des ingénieurs, en charge de l'éducation. Juin 2012-Dec.2017: Directrice de la Section Science et Génie des Matériaux Depuis Avril 2017, Professeur Associée EPFL 2009-2017 : Professeur Titulaire at EPFL 1997-2009 : collaboratrice Scientifique EPFL 1994-1997 : Chef de Travaux au laboratoire MSS-MAT, Ecole Centrale Paris (France) 1991-1994 : Post-doctoral research associate, MIT (USA) Environ 300 publications of which 140 in peer-reviewed journals
Yves BellouardDr. Yves Bellouard is Associate Professor in Microengineering at Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland, where he heads the Galatea lab and the Richemont Chair in micromanufacturing. He received a BS in Theoretical Physics and a MS in Applied Physics from Université Pierre et Marie Curie in Paris, France in 1994-1995 and a PhD in Microengineering from Ecole Polytechnique Fédérale de Lausanne (EPFL) in Lausanne, Switzerland in 2000. For his PhD work, he received the Omega Scientific prize (2001) for outstanding contribution in the field of microengineering for his work on Shape Memory Alloys. Before joining EPFL in 2015, he was Associate Professor at Eindhoven University of Technologies (TU/e) in the Netherlands and prior to that, Research Scientist at Rensselaer Polytechnic Institute (RPI) in Troy, New York for about four years where he started working on femtosecond laser processing of glass materials. From 2010 until 2013, Yves Bellouard initiated and coordinated the Femtoprint project, a European research initiative aiming at investigating a table-top printer for microsystems ('3D printing of microsystems'). In 2013, he received a prestigious ERC Starting Grant (Consolidator-2012) from the European Research Council and a JSPS Fellowship from the Japan Society for the Promotion of Science. His current research interests are on new paradigms for system integration at the microscale and in particular laser-based methods to tailor material properties for achieving higher level of integration in microsystems, like for instance integrating optics, mechanics and fluidics in a single monolith. These approaches open new opportunities for direct-write methods of microsystems (3D printing). Personal website
François AvellanLe professeur François Avellan, directeur du Laboratoire de machines hydrauliques de l'EPFL, est Ingénieur hydraulicien diplômé en 1977 de l'Ecole nationale supérieure d'hydraulique, Institut national polytechnique de Grenoble, France. En 1980, il obtient, son titre de docteur ingénieur de l'Université d'Aix-Marseille II, France. Engagé à l'EPFL en 1980 en tant qu'adjoint scientifique, il est depuis 1994 directeur du Laboratoire de machines hydrauliques de l'EPFL et il a été nommé en 2003 professeur ordinaire en machines hydrauliques.
Directeur de 37 thèses de doctorat de l'EPFL, il a été distingué par la Société hydrotechnique de France qui lui a décerné son "Grand Prix 2010 de l'hydrotechnique". Son activité de recherche est centrée sur l'hydrodynamique des turbomachines, pompes et pompes-turbines incluant en particulier les domaines de la cavitation, l'hydroacoustique, les interactions fluide-structure, la conception et l'évaluation des performances des machines hydrauliques et systèmes associés.
De 2002 à 2012, le Professeur Avellan a présidé la section machines hydrauliques et systèmes de l'Association internationale de recherche hydraulique, AIRH. Le Professeur François Avellan a dirigé avec succès plusieurs projets de recherche aussi bien suisses qu'internationaux en partenariat avec les principaux acteurs industriels et exploitants du secteur hydro-électrique, parmi ces projet-on peut citer notamment:
-
Coordination du projet de recherche FP7 n° 608532 "HYPERBOLE: HYdropower plants PERformance and flexiBle Operation towards Lean integration of new renewable Energies" (2013-2017);
-
Directeur adjoint du pole Suisse de compétence en recherche énergétique – approvisionnement électrique (SCCER-SoE) pour développer une recherche innovante et pérenne dans le domaine des géo-énergies et de l'hydro-électricité pour la phase I (2013-2016) et la Phase II (2017, 2010).
-
Projets de recherche EUREKA: N° 4150 et N° 3246, "HYDRODYNA, Harnessing the dynamic behavior of pump-turbines", (2003-2011), N° 1605, "FLINDT, Flow Investigation in Draft Tubes", (1997-2002). N° 2418, "SCAPIN, Stability of Operation of Francis turbines, prediction and modeling";
-
Projets de recherche de la Commission pour la technologie et l'innovation, CTI, avec GE Renewable Energy (anc. ALSTOM Hydro), Birr, ANDRITZ Hydro, Kriens, FMV, Sion, Groupe E, Granges-Paccot, Power Vision engineering, Ecublens et SULZER Pompes, Winterthur.
-
Domaine des EPF, Projet HYDRONET du Centre de Compétence énergie et mobilité, PSI Villingen.
Enfin, il est impliqué dans l'expertise scientifique et les essais contractuels indépendants des performances des turbines et pompes-turbines des centrales hydro-électriques les plus importantes du monde. En reconnaissance de son activité de responsable du groupe de travail du comité TC4 en charge de la nouvelle édition de la norme CEI 60193, la Commission internationale électrotechnique, CEI, l'a distingué par le "IEC 1906 Award". Reymond ClavelReymond CLAVEL obtained his degree in mechanical engineering at the Federal Institute of Technology of Lausanne (EPFL), Switzerland, in 1973. After nine years of gathered experience in industrial plants at Hermes Precisa International (research and development), he was appointed professor at the EPFL, where he obtained his PhD degree in parallel robotics in 1991. He was then consecutively entrusted with the following positions: Head of the department, Director of the Section of micro engineering and, in 1993, Director of the Laboratory of robotics systems (LSRO). His present research topics are parallel robotics, high speed and high precision robotics, medical and surgical robotics applications, surgical instrumentation and precision mechanisms.
Reymond Clavels research successes in parallel and industrial robotics received worldwide special mentions.
Awards :
1989: Laureate of the JIRA AWARD (Japan Industrial Robot Association) for the DELTA parallel robot invented in 1985.
1996: Project winner of the Technologiestandort Schweiz competition and ABB Sonderpreis for the best robotics project.
1998: His laboratory is awarded the Grand Prix de lInnovation in Monaco for new robot technologies.
1999: Laureate of the Golden Robot Award for the DELTA Robot.
2003: Each of his three different submitted projects received the Swiss Technology Award.
2005: Project winner of the Swiss Technology Award competition with further the Sonderpreis 2005 from the Vontobel Foundation in the field of Inventing the future.
2006: Project winner of the Swiss Technology Award competition with Quantum leap into world of nano-EDM (a new high precision EDM machine based on the Delta kinematics).
2007: Two projects based on the LSROs researches are winner of the Swiss Technology Award competition: Cyberthosis for paraplegia rehabilitation (a collaboration with the company Swortec and the Fondation Suisse pour les Cyberthèses (FSC)) and the Microfactory realized in partnership with the CSEM .
Johan Alexandre Philippe GaumeI started my scientific career in 2008 at the Grenoble University in the IRSTEA laboratory where I did my master's thesis on the rheology of dense granular materials using the discrete element method. In the same lab, I followed with a PhD on the numerical modeling of the release depth of extreme avalanches using a combined mechanical-statistical approach and spatial extreme statistics. In 2013 I obtained a postdoc position at the WSL Institute for Snow and Avalanche Research SLF in Davos where I was in charge of developing and applying numerical models to improve the evaluation of avalanche release conditions and thus avalanche forecasting. While my PhD was mostly theoretical and numerical, my postdoc in Davos allowed me to gain a practical expertise by participating in laboratory and field experiments which helped to validate the models I develop. In 2016, I was awarded a SNF grant to work as a research and teaching associate in CRYOS at EPFL on the multiscale modeling of snow and avalanche processes. I developed discrete approaches to model snow micro-structure deformation and failure in order to evaluate constitutive snow models to be used at a larger scale in continuum models. I also developed numerical models for wind-driven snow transport. In 2017, I was a Visiting Scholar at UCLA to work on a Material Point Method (MPM) to simulate both the initiation and propagation of snow avalanches in a unified manner. The UCLA MPM model was initially developed for the Disney movie "Frozen" and has been modified and enriched based on Critical State Soil Mechanics to model the release and flow of slab avalanches. The results of this collaboration have been published in Nature Communications. In 2018, I was awarded the SNF Eccellenza Professorial Fellowship and became professor at EPFL and head of SLAB, the Snow and Avalanche Simulation Laboratory. At SLAB, we study micro-mechanical failure and fracture propagation of porous brittle solids, with applications in snow slab avalanche release. We also simulate avalanche dynamics and flow regime transitions over complex 3D terrain through the development of new models (depth-resolved and depth-averaged) based on MPM.In 2020, I obtained a SPARK grant to develop a new approach to simulate and better understand complex process chains in gravitational mass movements, including permafrost instabilities, rock, snow and ice avalanches and transitions to debris flows.