DISPLAYTITLE:1 52 honeycomb
In geometry, the 152 honeycomb is a uniform tessellation of 8-dimensional Euclidean space. It contains 142 and 151 facets, in a birectified 8-simplex vertex figure. It is the final figure in the 1k2 polytope family.
It is created by a Wythoff construction upon a set of 9 hyperplane mirrors in 8-dimensional space.
The facet information can be extracted from its Coxeter-Dynkin diagram.
Removing the node on the end of the 2-length branch leaves the 8-demicube, 151.
Removing the node on the end of the 5-length branch leaves the 142.
The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the birectified 8-simplex, 052.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
DISPLAYTITLE:5 21 honeycomb In geometry, the 521 honeycomb is a uniform tessellation of 8-dimensional Euclidean space. The symbol 521 is from Coxeter, named for the length of the 3 branches of its Coxeter-Dynkin diagram. By putting spheres at its vertices one obtains the densest-possible packing of spheres in 8 dimensions. This was proven by Maryna Viazovska in 2016 using the theory of modular forms. Viazovska was awarded the Fields Medal for this work in 2022.
DISPLAYTITLE:Uniform 1 k2 polytope In geometry, 1k2 polytope is a uniform polytope in n-dimensions (n = k+4) constructed from the En Coxeter group. The family was named by their Coxeter symbol 1k2 by its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 1-node sequence. It can be named by an extended Schläfli symbol {3,3k,2}. The family starts uniquely as 6-polytopes, but can be extended backwards to include the 5-demicube (demipenteract) in 5-dimensions, and the 4-simplex (5-cell) in 4-dimensions.
DISPLAYTITLE:1 42 polytope In 8-dimensional geometry, the 142 is a uniform 8-polytope, constructed within the symmetry of the E8 group. Its Coxeter symbol is 142, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 1-node sequences. The rectified 142 is constructed by points at the mid-edges of the 142 and is the same as the birectified 241, and the quadrirectified 421.